Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study

  • David Jefferson Cardoso Araújo
  • Ana Vera Machado
  • Maria Cândida Lobo Guerra Vilarinho
Original Paper


Bio-based polymers have emerged as a feasible alternative to petrochemical polymers mainly due to their biodegradability and renewable feedstock. Brazil is considered one of the largest producers of agricultural commodities. Hence, the country is also distinguished by the large generation of this residue type, which can be potentially used as a source to obtain biopolymers, such as cellulose. Based on the Brazil agriculture market, the study aims to analyze the suitability of agroindustrial residues as raw material for cellulose-based materials. A methodology for the selection of the most suitable residues is proposed, which takes into account the chemical composition of residues, namely the cellulose content and the cellulose-to-lignin ratio, as well as, their availability. In order to meet conservation issues, the availability of residues is calculated as a function of sustainable removal rates and competitive uses. Taking as reference the main crops identified, the average amount of agroindustrial residues available in Brazil was estimated at 108 million tons/year. Among the most suitable residues to be used as cellulose feedstock are soybean straw, sugarcane top/leaves, maize husk and stover and sugarcane bagasse.

Graphical Abstract


Cellulose Lignocellulosic biomass Bio-based materials Availability of residues 



This work was supported by the Brazilian National Council for Scientific and Technological Development (Grant Number 201940/2015-9).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    European Bioplastics: Biopalstics facts and figures. Institute for Bioplastics and Biocomposites, 1–6 (2016). http://twixar.me/43T3
  2. 2.
    Avio, C.G., Gorbi, S., Regoli, F.: Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).  https://doi.org/10.1016/j.marenvres.2016.05.012 Google Scholar
  3. 3.
    Hervy, M., Evangelisti, S., Lettieri, P., Lee, K.Y.: Life cycle assessment of nanocellulose-reinforced advanced fibre composites. Compos. Sci. Technol. 118, 154–162 (2015).  https://doi.org/10.1016/j.compscitech.2015.08.024 Google Scholar
  4. 4.
    ABRELPE: Panorama of solid waste in Brazil 2015. Panor. dos Resíduos Sólidos no Bras. 2015. 92 (2015). ISSN 2179-8303 9Google Scholar
  5. 5.
    Shah, A.A., Hasan, F., Hameed, A., Ahmed, S.: Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265 (2008).  https://doi.org/10.1016/j.biotechadv.2007.12.005 Google Scholar
  6. 6.
    Webb, H.K., Arnott, J., Crawford, R.J., Ivanova, E.P.: Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel). 5, 1–18 (2013).  https://doi.org/10.3390/polym5010001 Google Scholar
  7. 7.
    Andrady, A.L.: Persistence of plastic litter in the oceans. In: Bergmann, M., Gutow, L., Klages, M. (eds.) Marine Anthropogenic Litter, pp. 57–72. Springer, Berlin (2015)Google Scholar
  8. 8.
    Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F., Ryan, P.G., Reisser, J.: Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE. 9, 1–15 (2014).  https://doi.org/10.1371/journal.pone.0111913 Google Scholar
  9. 9.
    Singh, M., Kaushik, A., Ahuja, D.: Surface functionalization of nanofibrillated cellulose extracted from wheat straw: effect of process parameters. Carbohydr. Polym. 150, 48–56 (2016).  https://doi.org/10.1016/j.carbpol.2016.04.109 Google Scholar
  10. 10.
    Lee, H.V., Hamid, S.B., Zain, S.K.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process conversion of lignocellulosic biomass to nanocellulose. Sci. World J. (2014).  https://doi.org/10.1155/2014/631013 Google Scholar
  11. 11.
    Reddy, N., Yang, Y.: Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 23, 22–27 (2005).  https://doi.org/10.1016/j.tibtech.2004.11.002 Google Scholar
  12. 12.
    Yue, Y., Han, J., Han, G., Aita, G.M., Wu, Q.: Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind. Crops Prod. 76, 355–363 (2015).  https://doi.org/10.1016/j.indcrop.2015.07.006 Google Scholar
  13. 13.
    Wang, S., Lu, A., Zhang, L.: Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016).  https://doi.org/10.1016/j.progpolymsci.2015.07.003 Google Scholar
  14. 14.
    Grishkewich, N., Mohammed, N., Tang, J., Tam, K.C.: Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interface Sci. 29, 32–45 (2017).  https://doi.org/10.1016/j.cocis.2017.01.005 Google Scholar
  15. 15.
    Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).  https://doi.org/10.1002/anie.200460587 Google Scholar
  16. 16.
    Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010).  https://doi.org/10.1021/cr900339w Google Scholar
  17. 17.
    Ojeda, T.: Polymers and the environment. Polym. Sci. (2013).  https://doi.org/10.5772/51057 Google Scholar
  18. 18.
    Li, Q., Jiang, X., He, Y., Li, L., Xian, M., Yang, J.: Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl. Microbiol. Biotechnol. 87, 117–126 (2010).  https://doi.org/10.1007/s00253-010-2484-8 Google Scholar
  19. 19.
    Mondal, S.: Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 163, 301–316 (2017).  https://doi.org/10.1016/j.carbpol.2016.12.050 Google Scholar
  20. 20.
    Ullah, K., Sharma, V.K., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S.: Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew. Sustain. Energy Rev. 51, 682–698 (2015).  https://doi.org/10.1016/j.rser.2015.06.044 Google Scholar
  21. 21.
    Schneider, V.E., Peresin, D., Trentin, A.C., Bortolin, T.A., Sambuichi, R.H.R.: Caderno de diagnósticos: Resíduos Agrosilvopastoris I. (2011)Google Scholar
  22. 22.
    Forster-Carneiro, T., Berni, M.D., Dorileo, I.L., Rostagno, M.A.: Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resour. Conserv. Recycl. 77, 78–88 (2013).  https://doi.org/10.1016/j.resconrec.2013.05.007 Google Scholar
  23. 23.
    Carvalho, F.C., De: Disponibilidade De Resíduos Agroindustriais E Do Beneficiamento De Produtos Agrícolas. Inf. Econ. 22, 31–46 (1992)Google Scholar
  24. 24.
    Tolmasquim, M.T., et al.: Inventário Energético de Resíduos Rurais. EPE, Resur. tesnológicos. 1–47 (2014)Google Scholar
  25. 25.
    Schneider, V.E., Peresin, D., Trentin, A.C., Bortolin, T.A., Sambuichi, R.H.R.: Resíduos Agrosilvopastoris I. Cad. Diagnóstico. 1–269 (2011)Google Scholar
  26. 26.
    IBGE - Brazilian institute of geography and statistics: No Title, https://sidra.ibge.gov.br/pesquisa/lspa/tabelas
  27. 27.
    FAO - Food and Agricultural Organization: natural resources module - biomass potential assessement, http://www.fao.org/energy/bioenergy/befs/assessment/befs-ra/natural-resources/en/
  28. 28.
    Jiang, D., Zhuang, D., Fu, J., Huang, Y., Wen, K.: Bioenergy potential from crop residues in China: availability and distribution. Renew. Sustain. Energy Rev. 16, 1377–1382 (2012).  https://doi.org/10.1016/j.rser.2011.12.012 Google Scholar
  29. 29.
    Panoutsou, C., Labalette, F.: Cereals straw for bioenergy and competitive uses. In: Proceedings of the Cereals Straw Resources for Bioenergy in the Europian Union, Pamplona, pp. 18–19. Pamplona (2006)Google Scholar
  30. 30.
    Koopmans, A., Koppejan, J.: Agricultural and forest residues—generation, utilization and availability. Reg. Consult. Mod. Appl. Biomass Energy (1997).  https://doi.org/10.1016/S0251-1088(83)90310-8 Google Scholar
  31. 31.
    Rosal, A., Rodriguez, A., Gonzalez, Z., Jimenez, L.: Use of banana tree residues as pulp for paper and combustible. Int. J. Phys. Sci. 7, 2406–2413 (2012).  https://doi.org/10.5897/IJPS11.1661 Google Scholar
  32. 32.
    Schieber, A., Stintzing, F., Carle, R.: By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci. Technol. 12, 401–413 (2001).  https://doi.org/10.1016/S0924-2244(02)00012-2 Google Scholar
  33. 33.
    Arapoglou, D., Varzakas, T., Vlyssides, A., Israilides, C.: Ethanol production from potato peel waste (PPW). Waste Manag. 30, 1898–1902 (2010).  https://doi.org/10.1016/j.wasman.2010.04.017 Google Scholar
  34. 34.
    Dhillon, G.S., Kaur, S., Brar, S.K.: Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: a review. Renew. Sustain. Energy Rev. 27, 789–805 (2013).  https://doi.org/10.1016/j.rser.2013.06.046 Google Scholar
  35. 35.
    Jiang, F., Hsieh, Y.L.: Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 122, 60–68 (2015).  https://doi.org/10.1016/j.carbpol.2014.12.064 Google Scholar
  36. 36.
    del Campo, I., Alegría, I., Zazpe, M., Echeverría, M., Echeverría, I.: Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crops Prod. 24, 214–221 (2006).  https://doi.org/10.1016/j.indcrop.2006.06.014 Google Scholar
  37. 37.
    Ayala-Zavala, J.F., Rosas-Domínguez, C., Vega-Vega, V., González-Aguilar, G.A.: Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: looking for integral exploitation. J. Food Sci. (2010).  https://doi.org/10.1111/j.1750-3841.2010.01792.x Google Scholar
  38. 38.
    Okpala, L.C., Gibson-Umeh, G.I.: Physicochemical properties of mango seed flour. Niger. Food J. 31, 23–27 (2013).  https://doi.org/10.1016/S0189-7241(15)30052-7 Google Scholar
  39. 39.
    Kareem, S., Akpan, I., Alebiowu, O.: Production of citric acid by Aspergillus niger using pineapple waste. Malays. J Microbiol. 6, 161–165 (2010)Google Scholar
  40. 40.
    Scarlat, N., Martinov, M., Dallemand, J.F.: Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use. Waste Manag. 30, 1889–1897 (2010).  https://doi.org/10.1016/j.wasman.2010.04.016 Google Scholar
  41. 41.
    Lindstrom, M.J.: Effects of residue harvesting on water runoff, soil erosion and nutrient loss. Agric. Ecosyst. Environ. 16, 103–112 (1986).  https://doi.org/10.1016/0167-8809(86)90097-6 Google Scholar
  42. 42.
    Nikolaou, A., Remrova, M., Jeliazkov, I.: Biomass availability in Europe. Lot 5 Appendix to EC report on Bio-energy’s Role in the EU Energy Market, 1–80 (2003)Google Scholar
  43. 43.
    Wilhelm, W.W., Johnson, J.M.F., Hatfield, J.L., Voorhees, W.B., Linden, D.R.: Crop and soil productivity response to corn residue removal: a literature review. Agron. J. 96, 1–17 (2004).  https://doi.org/10.2134/agronj2004.0001 Google Scholar
  44. 44.
    Kludze, H., Deen, B., Weersink, A., van Acker, R., Janovicek, K., De Laporte, A., McDonald, I.: Estimating sustainable crop residue removal rates and costs based on soil organic matter dynamics and rotational complexity. Biomass Bioenergy 56, 607–618 (2013).  https://doi.org/10.1016/j.biombioe.2013.05.036 Google Scholar
  45. 45.
    SoCo Project Team, SoCo, P.T.: Addressing soil degradation in EU agriculture: relevant processes, practices and policies. (2009)Google Scholar
  46. 46.
    Karkee, M., McNaull, R.P., Birrell, S.J., Steward, B.L.: Estimation of optimal biomass removal rate based on tolerable soil erosion for single-pass crop grain and biomass harvesting system. Trans. Asabe. 55, 107–115 (2012)Google Scholar
  47. 47.
    Koubaissy, B., Toufaily, J., Cheikh, S., Hassan, M., Hamieh, T.: Valorization of agricultural waste into activated carbons and its adsorption characteristics for heavy metals. Cent. Eur. J. Eng. (2014).  https://doi.org/10.2478/s13531-013-0148-z Google Scholar
  48. 48.
    Zhang, P., Dong, S.J., Ma, H.H., Zhang, B.X., Wang, Y.F., Hu, X.M.: Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind. Crops Prod. 76, 688–696 (2015).  https://doi.org/10.1016/j.indcrop.2015.07.037 Google Scholar
  49. 49.
    Mtui, G.Y.S.: Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr. J. Biotechnol. 8, 1398–1415 (2009).  https://doi.org/10.1073/pnas.1014862107/-/DCSupplemental.www.pnas.org/cgi/ Google Scholar
  50. 50.
    Satyanarayana, K.G., Guimarães, J.L., Wypych, F.: Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Compos. A 38, 1694–1709 (2007).  https://doi.org/10.1016/j.compositesa.2007.02.006 Google Scholar
  51. 51.
    Faulstich de Paiva, J.M., Frollini, E.: Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol. Mater. Eng. 291, 405–417 (2006).  https://doi.org/10.1002/mame.200500334 Google Scholar
  52. 52.
    Guimarães, J.L., Frollini, E., da Silva, C.G., Wypych, F., Satyanarayana, K.G.: Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crop. Prod. 30, 407–415 (2009)Google Scholar
  53. 53.
    Miléo, P.C., Leão, R.M., Luz, S.M., Rocha, G.J.M., Gonçalves, A.R.: Typical Brazilian lignocellulosic natural fibers as reinforcement of thermosetting and thermoplastics matrices. In: Thakur, V.K. (ed.) Lignocellulosic Polymer Composites, pp. 103–124. Wiley, Hoboken (2014)Google Scholar
  54. 54.
    Satyanarayana, K.G., Flores-Sahagun, T.H., Bowman, P.: Lignocellulosic materials of Brazil—their characterization and applications in polymer composites and art works. In: Kalia S. (ed.) Lignocellulosic Composite Materials. Springer Series on Polymer and Composite Materials (2018)Google Scholar
  55. 55.
    Cuenca, M.A.G., Resende, J.M., Saggin Júnior, O.J., et al.: Mercado brasileiro do coco: situação atual e perspectivas. In: Aragão, W.M. (ed.) Coco: pós póscolheita, pp. 11–18. Embrapa Informação Tecnológica, Brasília (2002)Google Scholar
  56. 56.
    Ferraz, M.S.: Perspectivas de mercado - Produção e Consumo de manga. I Simpósio manga do Val. do São Fr. 12 (2005)Google Scholar
  57. 57.
    Treichel Michelle, et al.: Anuário Brasileiro da Fruticultura. Editora Gazeta Santa Cruz, Santa Cruz do Sul (2016)Google Scholar
  58. 58.
    Treichel Michelle, et al.: Brazilian tomato Yearbook 2016. Editora Gazeta Santa Cruz, Santa Cruz do Sul (2016)Google Scholar
  59. 59.
    Brasil, H.F.: Procuram-se agroindústrias, http://migre.me/wKQ8N, (2011)
  60. 60.
    Bernardo, B.K., et al.: Brazilian Apple Yearbook 2016. Editora Gazeta Santa Cruz, Santa Cruz do Sul (2016)Google Scholar
  61. 61.
    Müller, I., et al.: Brazilian Cocoa yearbook 2012. Santa Cruz do Sul (2012)Google Scholar
  62. 62.
    Kist, B.B., dos Santos, C.E., Carvalho, C., Reetz, E.G., Müller, I., Beling, R.R.: Brazilian Coffee Yearbook 2015. Editora Gazeta Santa Cruz (2015)Google Scholar
  63. 63.
    Roozen, A.: Availability of sustainable lignocellulosic biomass residues in Brazil for export to the EU. 92 (2015)Google Scholar
  64. 64.
    Ferreira-Leitao, V., Gottschalk, L.M.F., Ferrara, M.A., Nepomuceno, A.L., Molinari, H.B.C., Bon, E.P.S.: Biomass residues in Brazil: availability and potential uses. Waste Biomass Valor. 1, 65–76 (2010).  https://doi.org/10.1007/s12649-010-9008-8 Google Scholar
  65. 65.
    Torres, G.A., Renato, L., Tarifa, M.: Aproveitamento de Resíduos Agrícolas. p. 27 (2012)Google Scholar
  66. 66.
    Brum, S.S., Oliveira, L.C.a., De Bianchi, M.L., Guerreiro, M.C., Oliveira, L.K., De Carvalho, K.T.G.: Síntese de acetato de celulose a partir da palha de feijão utilizando N-bromossuccinimida (NBS) como catalisador. Polímeros. 22, 0–0 (2012).  https://doi.org/10.1590/S0104-14282012005000061 Google Scholar
  67. 67.
    CitrusBR: Brazilian orange juice: en route to sustainability. p. 9 (2012)Google Scholar
  68. 68.
    Mello, L.M.R., Silva, G.A.: Disponibilidade e Características de Resíduos Provenientes da Agroindústria de Processamento de Uva do Rio Grande do Sul. Embrapa Comun. Técnico 155. Fevereiro, pp. 1–6 (2014)Google Scholar
  69. 69.
    Mattos, A.L.A., Rosa, M.D.F., Crisóstomo, L.A., Bezerra, F.C., Correia, D.: Beneficiamento da casca de coco verde. Embrapa Agroindústria Trop. Fortaleza. 37 (2011)Google Scholar
  70. 70.
    Fontenele, R.E.S.: Cultura do coco no Brasil: Caracterização do mercado atual e perspectivas futuras. XII Congr. da SOBER. pp. 1–20 (2005)Google Scholar
  71. 71.
    Idoeta, P.A.: Indústria do coco cresce, mas alto desperdício gera desafio tecnológico, http://www.bbc.com/portuguese/noticias/2014/02/140207_coco_reciclagem_abre_pai
  72. 72.
    Azevêdo, J.A.V., Filho, S.C.V., Pina, D.S., Detmann, E., Valadares, F.R.D., Pereira, L.G.R., Souza, N.K.P., Silva, L.F.C.: Intake, total digestibility, microbial protein production and the nitrogen balance in diets with fruit by-products for ruminants. Rev. Bras. Zootec. 40, 1052–1060 (2011)Google Scholar
  73. 73.
    Pereira, L.G.R., Aragão, A.L.S., Santos, R.D., Azevêdo, J.A.G., Neves, A.L.A., Ferreira, A.L., Chizzotti, M.L.: Com Farelo De Manga. Arq. Bras. Med. Veterinária e Zootec. 65, 675–680 (2013)Google Scholar
  74. 74.
    García Herrera, P., Sánchez-Mata, M.C., Cámara, M.: Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innov. Food Sci. Emerg. Technol. 11, 707–711 (2010).  https://doi.org/10.1016/j.ifset.2010.07.005 Google Scholar
  75. 75.
    Mirabella, N., Castellani, V., Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Clean. Prod. 65, 28–41 (2014).  https://doi.org/10.1016/j.jclepro.2013.10.051 Google Scholar
  76. 76.
    Kehili, M., Schmidt, L.M., Reynolds, W., Zammel, A., Zetzl, C., Smirnova, I., Allouche, N., Sayadi, S.: Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnol. Biofuels 9, 261 (2016).  https://doi.org/10.1186/s13068-016-0676-x Google Scholar
  77. 77.
    Nelson, M.L.: Utilization and application of wet potato processing coproducts for finishing cattle. J. Anim. Sci. (2010).  https://doi.org/10.2527/jas.2009-2502 Google Scholar
  78. 78.
    Paganini, C., Nogueira, A., Silva, N.C., Wosiacki, G.: Utilization of apple pomace for ethanol production and food fiber obtainment. Ciênc Agrotecnol 29, 1231–1238 (2005)Google Scholar
  79. 79.
    Daud, Z., Kassim, A.S.M., Aripin, A.M., Awang, H., Hatta, M.Z.M.: Chemical composition and morphological of cocoa pod husks and cassava peels for pulp and paper production. Aust. J. Basic Appl. Sci. 7, 406–411 (2013)Google Scholar
  80. 80.
    Araújo, D.J.C., Machado, A.V., Vilarinho, M.C.L.G.: Suitability of agroindustrial residues for cellulose-based materials production. In: Vilarinho, C., Castro, F., Russo, M. (eds.) Wastes: Solutions, Treatments and Opportunities, p. 452. CRC Press, Boca Raton (2017)Google Scholar
  81. 81.
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)Google Scholar
  82. 82.
    Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T.: Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550 (2013).  https://doi.org/10.1039/c2gc36364j Google Scholar
  83. 83.
    Choonut, A., Saejong, M., Sangkharak, K.: The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52, 242–249 (2014).  https://doi.org/10.1016/j.egypro.2014.07.075 Google Scholar
  84. 84.
    Silanikove, N., Levanon, D.: Cotton straw: composition, variability and effect of anaerobic preservation. Biomass 9, 101–112 (1986).  https://doi.org/10.1016/0144-4565(86)90114-9 Google Scholar
  85. 85.
    Balasubramanya, R.H., Shaikh, A.J.: Utilization of cottonseed by-products. Model training course on Cultivation of long staple cotton. Central Institute for Cotton Research, pp. 130–138 (2007)Google Scholar
  86. 86.
    Prasad Reddy, J., Rhim, J.W.: Isolation and characterization of cellulose nanocrystals from garlic skin. Mater. Lett. 129, 20–23 (2014).  https://doi.org/10.1016/j.matlet.2014.05.019 Google Scholar
  87. 87.
    Wang, B., Li, D.: Strong and optically transparent biocomposites reinforced with cellulose nanofibers isolated from peanut shell. Compos. Part A 79, 1–7 (2015).  https://doi.org/10.1016/j.compositesa.2015.08.029 Google Scholar
  88. 88.
    Kim, J.W., Kim, K.S., Lee, J.S., Park, S.M., Cho, H.Y., Park, J.C., Kim, J.S.: Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresour. Technol. 102, 8992–8999 (2011).  https://doi.org/10.1016/j.biortech.2011.06.068 Google Scholar
  89. 89.
    Chaker, A., Mutjé, P., Vilar, M.R., Boufi, S.: Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21, 4247–4259 (2014).  https://doi.org/10.1007/s10570-014-0454-5 Google Scholar
  90. 90.
    Johar, N., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37, 93–99 (2012).  https://doi.org/10.1016/j.indcrop.2011.12.016 Google Scholar
  91. 91.
    Rowell, R.M., Han, J.S., Rowell, J.S.: Characterization and factors effecting fiber properties. Nat. Polym. Agrofibers Compos. 2000, 115–134 (2000)Google Scholar
  92. 92.
    Önal, E.P., Uzun, B.B., Pütün, A.E.: Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process. Technol. 92, 879–885 (2011).  https://doi.org/10.1016/j.fuproc.2010.12.006 Google Scholar
  93. 93.
    Szczerbowski, D., Pitarelo, A.P., Zandoná Filho, A., Ramos, L.P.: Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym. 114, 95–101 (2014).  https://doi.org/10.1016/j.carbpol.2014.07.052 Google Scholar
  94. 94.
    Rhim, J.W., Reddy, J.P., Luo, X.: Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose. 22, 407–420 (2015).  https://doi.org/10.1007/s10570-014-0517-7 Google Scholar
  95. 95.
    Sosulski, F.W., Wu, K.K.: High-fiber breads containing field pea hulls, wheat, corn, and wild oat brans. Cereal Chem. 65, 186–191 (1988)Google Scholar
  96. 96.
    Kopania, E., Wietecha, J., Ciechańska, D.: Studies on isolation of cellulose fibres from waste plant biomass. Fibres Text. East. Eur. 96, 167–172 (2012)Google Scholar
  97. 97.
    Abraham, E., Deepa, B., Pothan, L.A., Jacob, M., Thomas, S., Cvelbar, U., Anandjiwala, R.: Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 86, 1468–1475 (2011).  https://doi.org/10.1016/j.carbpol.2011.06.034 Google Scholar
  98. 98.
    Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., Chen, P.: Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18, 433–442 (2011).  https://doi.org/10.1007/s10570-011-9497-z Google Scholar
  99. 99.
    Castaño, P.H., Reales, A.J.G., Zapata, M.J.: Enzymatic hydrolysis of cassava stalk pretreated with the alkaline method. Agron. Colomb. 33, 238–243 (2015).  https://doi.org/10.15446/agron.colomb.v33n2.50115 Google Scholar
  100. 100.
    Ma, Z., Pan, G., Xu, H., Huang, Y., Yang, Y.: Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration. Carbohydr. Polym. 124, 50–56 (2015).  https://doi.org/10.1016/j.carbpol.2015.02.008 Google Scholar
  101. 101.
    Silvério, H.A., Neto, W.P.F., Dantas, N.O., Pasquini, D.: Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind. Crops Prod. 44, 427–436 (2013).  https://doi.org/10.1016/j.indcrop.2012.10.014 Google Scholar
  102. 102.
    Mohanty, A.K., Mishra M, Drzal, L.T.: Natural Fibres, Biopolymers and Biocomposites, p. 855. CRC Press, Boca Raton (2005)Google Scholar
  103. 103.
    Saha, P., Chowdhury, S., Roy, D., Adhikari, B., Kim, J.K., Thomas, S.: A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polym. Bull. 73, 587–620 (2016).  https://doi.org/10.1007/s00289-015-1489-y Google Scholar
  104. 104.
    Reddy, N., Yang, Y.: Natural cellulose fibers from soybean straw. Bioresour. Technol. 100, 3593–3598 (2009).  https://doi.org/10.1016/j.biortech.2008.09.063 Google Scholar
  105. 105.
    Theerarattananoon, K., Xu, F., Wilson, J., Staggenborg, S., Mckinney, L., Vadlani, P., Pei, Z., Wang, D.: Effects of the pelleting conditions on chemical composition and sugar yield of corn stover, big bluestem, wheat straw, and sorghum stalk pellets. Bioprocess. Biosyst. Eng. 35, 615–623 (2012).  https://doi.org/10.1007/s00449-011-0642-8 Google Scholar
  106. 106.
    Font, R., Moltó, J., Gálvez, A., Rey, M.D.: Kinetic study of the pyrolysis and combustion of tomato plant. J. Anal. Appl. Pyrolysis 85, 268–275 (2009).  https://doi.org/10.1016/j.jaap.2008.11.026 Google Scholar
  107. 107.
    Chiou, B.S., Valenzuela-Medina, D., Bilbao-Sainz, C., Klamczynski, A.K., Avena-Bustillos, R.J., Milczarek, R.R., Du, W.X., Glenn, G.M., Orts, W.J.: Torrefaction of pomaces and nut shells. Bioresour. Technol. 177, 58–65 (2015).  https://doi.org/10.1016/j.biortech.2014.11.071 Google Scholar
  108. 108.
    Fu, D., Mazza, G., Tamaki, Y.: Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J. Agric. Food Chem. 58, 2915–2922 (2010).  https://doi.org/10.1021/jf903616y Google Scholar
  109. 109.
    Vlyssides, A.G., Loizides, M., Karlis, P.K.: Integrated strategic approach for reusing olive oil extraction by-products. J. Clean. Prod. 12, 603–611 (2004).  https://doi.org/10.1016/S0959-6526(03)00078-7 Google Scholar
  110. 110.
    Zuluaga, R., Putaux, J.L., Cruz, J., Vélez, J., Mondragon, I., Gañán, P.: Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 76, 51–59 (2009).  https://doi.org/10.1016/j.carbpol.2008.09.024 Google Scholar
  111. 111.
    Preethi, P., Balakrishna Murthy, G.: Physical and chemical properties of banana fibre extracted from commercial banana cultivars grown in Tamilnadu state. Agrotechnology 1, 8–11 (2013).  https://doi.org/10.4172/2168-9881.S11-008 Google Scholar
  112. 112.
    Murthy, P.S., Madhava Naidu, M.: Sustainable management of coffee industry by-products and value addition—a review. Resour. Conserv. Recycl. 66, 45–58 (2012).  https://doi.org/10.1016/j.resconrec.2012.06.005 Google Scholar
  113. 113.
    Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H.: Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83–92 (2010).  https://doi.org/10.1016/j.carbpol.2010.01.059 Google Scholar
  114. 114.
    Marín, F.R., Soler-Rivas, C., Benavente-García, O., Castillo, J., Pérez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100, 736–741 (2007).  https://doi.org/10.1016/j.foodchem.2005.04.040 Google Scholar
  115. 115.
    Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M.: Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind. Crops Prod. 38, 6–13 (2012).  https://doi.org/10.1016/j.indcrop.2011.12.036 Google Scholar
  116. 116.
    Henrique, M.A., Silvério, H.A., Flauzino Neto, W.P., Pasquini, D.: Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manag. 121, 202–209 (2013).  https://doi.org/10.1016/j.jenvman.2013.02.054 Google Scholar
  117. 117.
    Li, Q., Ng, W.T., Wu, J.C.: Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb. Cell Fact. 13, 1–8 (2014).  https://doi.org/10.1155/2014/702538 Google Scholar
  118. 118.
    Aguedo, M., Kohnen, S., Rabetafika, N., Bossche, S.V., Sterckx, J., Blecker, C., Beauve, C., Paquot, M.: Composition of by-products from cooked fruit processing and potential use in food products. J. Food Compos. Anal. 27, 61–69 (2012).  https://doi.org/10.1016/j.jfca.2012.04.005 Google Scholar
  119. 119.
    Rahman, M.M., Khan, M.A.: Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos. Sci. Technol. 67, 2369–2376 (2007).  https://doi.org/10.1016/j.compscitech.2007.01.009 Google Scholar
  120. 120.
    Rodrigues, B.V.M., Ramires, E.C., Santos, R.P.O., Frollini, E.: Ultrathin and nanofibers via room temperature electrospinning from trifluoroacetic acid solutions of untreated lignocellulosic sisal fiber or sisal pulp. J. Appl. Polym. Sci. 132, 1–8 (2015).  https://doi.org/10.1002/app.41826 Google Scholar
  121. 121.
    OCDE/FAO: Brazilian agriculture: prospects and challenges. OECD-FAO Agric. Outlook 2015. 61–108 (2015).  https://doi.org/10.1787/agr_outlook-2015-en
  122. 122.
    Sánchez, C.: Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009).  https://doi.org/10.1016/j.biotechadv.2008.11.001 Google Scholar
  123. 123.
    Abdulkhani, A., Marvast, E.H., Ashori, A., Karimi, A.N.: Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr. Polym. 95, 57–63 (2013).  https://doi.org/10.1016/j.carbpol.2013.02.040 Google Scholar
  124. 124.
    Flauzino Neto, W.P., Silvério, H.A., Dantas, N.O., Pasquini, D.: Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind. Crops Prod. 42, 480–488 (2013).  https://doi.org/10.1016/j.indcrop.2012.06.041 Google Scholar
  125. 125.
    Rahbar Shamskar, K., Heidari, H., Rashidi, A.: Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind. Crops Prod. 93, 203–211 (2016).  https://doi.org/10.1016/j.indcrop.2016.01.044 Google Scholar
  126. 126.
    Wulandari, W.T., Rochliadi, A., Arcana, I.M.: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Ser. Mater. Sci. Eng. 107, (2016).  https://doi.org/10.1088/1757-899X/107/1/012045
  127. 127.
    Zianor Azrina, Z.A., Beg, M.D.H., Rosli, M.Y., Ramli, R., Junadi, N., Alam, A.K.M.M.: Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydr. Polym. 162, 115–120 (2017).  https://doi.org/10.1016/j.carbpol.2017.01.035 Google Scholar
  128. 128.
    Ditzel, F.I., Prestes, E., Carvalho, B.M., Demiate, I.M., Pinheiro, L.A.: Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr. Polym. 157, 1577–1585 (2017).  https://doi.org/10.1016/j.carbpol.2016.11.036 Google Scholar
  129. 129.
    Barbash, V.A., Yaschenko, O.V., Shniruk, O.M.: Preparation and properties of nanocellulose from organosolv straw pulp. Nanoscale Res. Lett. 12, 241 (2017).  https://doi.org/10.1186/s11671-017-2001-4 Google Scholar
  130. 130.
    Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M.: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym. 94, 154–169 (2013).  https://doi.org/10.1016/j.carbpol.2013.01.033 Google Scholar
  131. 131.
    Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Mater. Today 16, 220–227 (2013).  https://doi.org/10.1016/j.mattod.2013.06.004 Google Scholar
  132. 132.
    Julkapli, N.M., Bagheri, S.: Progress on nanocrystalline cellulose biocomposites. React. Funct. Polym. 112, 9–21 (2017).  https://doi.org/10.1016/j.reactfunctpolym.2016.12.013 Google Scholar
  133. 133.
    Asgher, M., Ahmad, Z., Iqbal, H.M.N.: Bacterial cellulose-assisted de-lignified wheat straw-PVA based bio-composites with novel characteristics. Carbohydr. Polym. 161, 244–252 (2017).  https://doi.org/10.1016/j.carbpol.2017.01.032 Google Scholar
  134. 134.
    Yan, L., Kasal, B., Huang, L.: A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. B 92, 94–132 (2016).  https://doi.org/10.1016/j.compositesb.2016.02.002 Google Scholar
  135. 135.
    Gurunathan, T., Mohanty, S., Nayak, S.K.: A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. A 77, 1–25 (2015).  https://doi.org/10.1016/j.compositesa.2015.06.007 Google Scholar
  136. 136.
    Kumar, R., Sharma, R.K., Singh, A.P.: Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications—a review. J. Mol. Liq. 232, 62–93 (2017).  https://doi.org/10.1016/j.molliq.2017.02.050 Google Scholar
  137. 137.
    Hokkanen, S., Bhatnagar, A., Sillanpää, M.: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156–173 (2016).  https://doi.org/10.1016/j.watres.2016.01.008 Google Scholar
  138. 138.
    Sazali, N., Salleh, W.N.W., Ismail, A.F.: Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. Int. J. Hydrogen Energy 42, 9952–9957 (2017).  https://doi.org/10.1016/j.ijhydene.2017.01.128 Google Scholar
  139. 139.
    Harmsen, P.F., Hackmann, M.M., Bos, H.L.: Green building blocks for bio-based plastics. Biofuels Bioprod. Biorefining. 8, 306–324 (2014).  https://doi.org/10.1002/bbb Google Scholar
  140. 140.
    Özdenkçi, K., De Blasio, C., Muddassar, H.R., Melin, K., Oinas, P., Koskinen, J., Sarwar, G., Järvinen, M.: A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers. Manag. 149, 974–987 (2017).  https://doi.org/10.1016/j.enconman.2017.04.034 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Polymers and Composites/I3N and Centre for Waste ValorizationUniversity of MinhoGuimarãesPortugal
  2. 2.Institute for Polymers and Composites/i3NUniversity of MinhoGuimarãesPortugal
  3. 3.Mechanical Engineering and Resources Sustainability CentreUniversity of MinhoGuimarãesPortugal

Personalised recommendations