Carbon Dioxide Capture Using Amine Functionalized Hydrothermal Carbons from Technical Lignin

  • Emmanuel Atta-Obeng
  • Benjamin Dawson-Andoh
  • Eugene Felton
  • Greg Dahle
Original Paper
  • 26 Downloads

Abstract

Amine scrubbing is the most optimized and widely researched post combustion carbon dioxide capture technology till date. However, amine scrubbing remains costly because of high energy inputs during the regeneration stage. Although less researched, “solid sorbents” such as zeolite, active carbon, carbon coke, metal–organic frameworks and mesoporous silica are currently under development for CO2 capture as potential alternatives to amine scrubbers. In this study, sorbents were synthesized from carbonaceous materials (CMs) obtained from hydrothermally treated (350 °C) lignin, a waste material from forest biorefineries. CMs were activated with potassium hydroxide (KOH) at 800 °C to improve their textural properties and finally functionalized with polyethyleneimine (PEI) to also improve its CO2 capture properties. This study evaluated synergistic effect of these two treatments on adsorption capacity of CO2. Activation increased surface area of CMs from 2.8 to 1341 m2 g−1. CO2 capacities of 2 mmol g−1 (L350 PEI 5%) and 1.53 mmol g−1 (L350) could be reached at 30 °C, due to improved textural and chemical properties of the samples. Optimal PEI loading was determined to be 5%, after which CO2 sorption decreased with further additions of PEI. This was ascribed to blockage of the micro-pores in the activated samples at high PEI impregnation. Also, activated samples showed faster adsorption kinetics compared to PEI functionalized activated samples. The feasibility of using waste lignin with improved surface area and surface functionalities as alternative materials for CO2 adsorption was demonstrated.

Keywords

Carbon dioxide Polyethyleneimine (PEI) Activation Carbonaceous materials Lignin 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the USDA Northeast Sun Grant funded proposal (2014–2015) “Engineered High-Value Carbonaceous Products from Bio-refinery By-Products” and the USDA McIntire-Stennis Project # 1002913. The authors will also like to thank the School of Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV. USA and WVU Division of Diversity, Equity, & Inclusion, Chancellor’s Scholars Program for their partial financial support of Mr. Emmanuel Atta-Obeng Ph.D. studies.

References

  1. 1.
    Li, B., Duan, Y., Luebke, D., Morreale, B.: Advances in CO2 capture technology: a patent review. Appl. Energy 102, 1439–1447 (2013).  https://doi.org/10.1016/j.apenergy.2012.09.009 CrossRefGoogle Scholar
  2. 2.
    Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control 2, 9–20 (2008).  https://doi.org/10.1016/S1750-5836(07)00094-1 CrossRefGoogle Scholar
  3. 3.
    Ma, C., Pietrucci, F., Andreoni, W.: Capture and release of CO2 in monoethanolamine aqueous solutions: new insights from first-principles reaction dynamics. J. Chem. Theory Comput. 11, 3189–3198 (2015).  https://doi.org/10.1021/acs.jctc.5b00379 CrossRefGoogle Scholar
  4. 4.
    Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011).  https://doi.org/10.1016/j.cherd.2010.11.005 CrossRefGoogle Scholar
  5. 5.
    Luis, P., Van Gerven, T., Van der Bruggen, B.: Recent developments in membrane-based technologies for CO2 capture. Prog. Energy Combust. Sci. 38, 419–448 (2012).  https://doi.org/10.1016/j.pecs.2012.01.004 CrossRefGoogle Scholar
  6. 6.
    Ansaloni, L., Salas-Gay, J., Ligi, S., Baschetti, M.G.: Nanocellulose-based membranes for CO2 capture. J. Membr. Sci. 522, 216–225 (2017).  https://doi.org/10.1016/j.memsci.2016.09.024 CrossRefGoogle Scholar
  7. 7.
    Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D., Zhong, Z.: Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014).  https://doi.org/10.1039/C4EE01647E CrossRefGoogle Scholar
  8. 8.
    Berger, A.H., Bhown, A.S.: Optimizing solid sorbents for CO2 capture. Energy Procedia 37, 25–32 (2013).  https://doi.org/10.1016/j.egypro.2013.05.081 CrossRefGoogle Scholar
  9. 9.
    Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014).  https://doi.org/10.1016/j.rser.2014.07.093 CrossRefGoogle Scholar
  10. 10.
    Titirici, M.-M.: Sustainable Carbon Materials from Hydrothermal Processes. Wiley, Chichester (2013)CrossRefGoogle Scholar
  11. 11.
    Dobele, G., Vervikishko, D., Volperts, A., Bogdanovich, N., Shkolnikov, E.: Characterization of the pore structure of nanoporous activated carbons produced from wood waste. Holzforschung. 67, 587–594 (2013).  https://doi.org/10.1515/hf-2012-0188 CrossRefGoogle Scholar
  12. 12.
    Sevilla, M., Valle-Vigón, P., Fuertes, A.B.: N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21, 2781–2787 (2011).  https://doi.org/10.1002/adfm.201100291 CrossRefGoogle Scholar
  13. 13.
    Sangchoom, W., Mokaya, R.: Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage. ACS Sustain. Chem. Eng. 3, 1658–1667 (2015).  https://doi.org/10.1021/acssuschemeng.5b00351 CrossRefGoogle Scholar
  14. 14.
    Zeleňák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., Goerigk, G.: Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chem. Eng. J. 144, 336–342 (2008).  https://doi.org/10.1016/j.cej.2008.07.025 CrossRefGoogle Scholar
  15. 15.
    Qi, G., Wang, Y., Estevez, L., Duan, X., Anako, N., Park, A.-H.A., Li, W., Jones, C.W., Giannelis, E.P.: High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4, 444–452 (2011).  https://doi.org/10.1039/C0EE00213E CrossRefGoogle Scholar
  16. 16.
    Jang, D.-I., Park, S.-J.: Influence of amine grafting on carbon dioxide adsorption behaviors of activated carbons. Bull. Korean Chem. Soc. 32, 3377–3381 (2011).  https://doi.org/10.5012/bkcs.2011.32.9.3377 CrossRefGoogle Scholar
  17. 17.
    Wagner, A., Steen, B., Johansson, G., Zanghellini, E., Jacobsson, P., Johansson, P.: Carbon dioxide capture from ambient air using amine-grafted mesoporous adsorbents. Int. J. Spectrosc. 2013, e690186 (2013).  https://doi.org/10.1155/2013/690186 CrossRefGoogle Scholar
  18. 18.
    Gui, M.M., Yap, Y.X., Chai, S.-P., Mohamed, A.R.: Multi-walled carbon nanotubes modified with (3-aminopropyl)triethoxysilane for effective carbon dioxide adsorption. Int. J. Greenh. Gas Control 14, 65–73 (2013).  https://doi.org/10.1016/j.ijggc.2013.01.004 CrossRefGoogle Scholar
  19. 19.
    Atta-Obeng, E., Dawson-Andoh, B., Seehra, M.S., Geddam, U., Poston, J., Leisen, J.: Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization. Biomass Bioenergy 107, 172–181 (2017).  https://doi.org/10.1016/j.biombioe.2017.09.023 CrossRefGoogle Scholar
  20. 20.
    Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X., Song, C.: Infrared study of CO2 sorption over “molecular basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. J. Phys. Chem. C 113, 7260–7268 (2009).  https://doi.org/10.1021/jp809946y CrossRefGoogle Scholar
  21. 21.
    White, L.D., Tripp, C.P.: Reaction of (3-aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces. J. Colloid Interface Sci. 232, 400–407 (2000).  https://doi.org/10.1006/jcis.2000.7224 CrossRefGoogle Scholar
  22. 22.
    Diez, M.A., Alvarez, R., Fernández, M.: Biomass derived products as modifiers of the rheological properties of coking coals. Fuel 96, 306–313 (2012).  https://doi.org/10.1016/j.fuel.2011.12.065 CrossRefGoogle Scholar
  23. 23.
    González, J.F., Román, S., González-García, C.M., Nabais, J.M.V., Ortiz, A.L.: Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind. Eng. Chem. Res. 48, 7474–7481 (2009).  https://doi.org/10.1021/ie801848x CrossRefGoogle Scholar
  24. 24.
    Xia, Y., Mokaya, R., Walker, G.S., Zhu, Y.: Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Adv. Energy Mater. 1, 678–683 (2011).  https://doi.org/10.1002/aenm.201100061 CrossRefGoogle Scholar
  25. 25.
    Son, W.-J., Choi, J.-S., Ahn, W.-S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008).  https://doi.org/10.1016/j.micromeso.2007.10.049 CrossRefGoogle Scholar
  26. 26.
    Zhao, L., Bacsik, Z., Hedin, N., Wei, W., Sun, Y., Antonietti, M., Titirici, M.-M.: Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. ChemSusChem 3, 840–845 (2010).  https://doi.org/10.1002/cssc.201000044 CrossRefGoogle Scholar
  27. 27.
    Dao, D.S., Yamada, H., Yogo, K.: Large-pore mesostructured silica impregnated with blended amines for CO2 capture. Ind. Eng. Chem. Res. 52, 13810–13817 (2013).  https://doi.org/10.1021/ie4020588 CrossRefGoogle Scholar
  28. 28.
    Fierro, V., Torné-Fernández, V., Celzard, A.: Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural characterisation. Microporous and Mesoporous Materials. 92, 243–250 (2006).  https://doi.org/10.1016/j.micromeso.2006.01.013 CrossRefGoogle Scholar
  29. 29.
    Jain, A., Balasubramanian, R., Srinivasan, M.P.: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem. Eng. J. 283, 789–805 (2016).  https://doi.org/10.1016/j.cej.2015.08.014 CrossRefGoogle Scholar
  30. 30.
    Falco, C., Marco-Lozar, J.P., Salinas-Torres, D., Morallón, E., Cazorla-Amorós, D., Titirici, M.M., Lozano-Castelló, D.: Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon 62, 346–355 (2013).  https://doi.org/10.1016/j.carbon.2013.06.017 CrossRefGoogle Scholar
  31. 31.
    Wang, J., Chen, H., Zhou, H., Liu, X., Qiao, W., Long, D., Ling, L.: Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons. J. Environ. Sci. 25, 124–132 (2013).  https://doi.org/10.1016/S1001-0742(12)60011-4 CrossRefGoogle Scholar
  32. 32.
    Serna-Guerrero, R., Belmabkhout, Y., Sayari, A.: Triamine-grafted pore-expanded mesoporous silica for CO2 capture: effect of moisture and adsorbent regeneration strategies. Adsorption 16, 567–575 (2010).  https://doi.org/10.1007/s10450-010-9253-y CrossRefGoogle Scholar
  33. 33.
    Pang, S.H., Jue, M.L., Leisen, J., Jones, C.W., Lively, R.P.: PIM-1 as a solution-processable “molecular basket” for CO2 capture from dilute sources. ACS Macro Lett. 4, 1415–1419 (2015).  https://doi.org/10.1021/acsmacrolett.5b00775 CrossRefGoogle Scholar
  34. 34.
    Wang, D., Sentorun-Shalaby, C., Ma, X., Song, C.: High-capacity and low-cost carbon-based “molecular basket” sorbent for CO2 capture from flue gas. Energy Fuels 25, 456–458 (2011).  https://doi.org/10.1021/ef101364c CrossRefGoogle Scholar
  35. 35.
    Xu, X., Song, C., Miller, B.G., Scaroni, A.W.: Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind. Eng. Chem. Res. 44, 8113–8119 (2005).  https://doi.org/10.1021/ie050382n CrossRefGoogle Scholar
  36. 36.
    Yu, C.-H., Huang, C.-H., Tan, C.-S.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012)Google Scholar
  37. 37.
    Ma, X., Wang, X., Song, C.: “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. J. Am. Chem. Soc. 131, 5777–5783 (2009).  https://doi.org/10.1021/ja8074105 CrossRefGoogle Scholar
  38. 38.
    Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009).  https://doi.org/10.1002/cssc.200900036 CrossRefGoogle Scholar
  39. 39.
    Cogswell, C.F., Jiang, H., Ramberger, J., Accetta, D., Willey, R.J., Choi, S.: Effect of pore structure on CO2 adsorption characteristics of aminopolymer impregnated MCM-36. Langmuir 31, 4534–4541 (2015).  https://doi.org/10.1021/la505037f CrossRefGoogle Scholar
  40. 40.
    Wang, J., Wang, M., Li, W., Qiao, W., Long, D., Ling, L.: Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2. AIChE J. 61(3), 972–980 (2015).  https://doi.org/10.1002/aic.14679 CrossRefGoogle Scholar
  41. 41.
    Przepiórski, J., Skrodzewicz, M., Morawski, A.W.: High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. 225, 235–242 (2004).  https://doi.org/10.1016/j.apsusc.2003.10.006 CrossRefGoogle Scholar
  42. 42.
    Arenillas, A., Smith, K.M., Drage, T.C., Snape, C.E.: CO2 capture using some fly ash-derived carbon materials. Fuel 84, 2204–2210 (2005).  https://doi.org/10.1016/j.fuel.2005.04.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Emmanuel Atta-Obeng
    • 1
  • Benjamin Dawson-Andoh
    • 1
  • Eugene Felton
    • 2
  • Greg Dahle
    • 1
  1. 1.Department of Forestry and Sustainable Bio-materialsWest Virginia UniversityMorgantownUSA
  2. 2.Department of Animal and Nutritional SciencesWest Virginia UniversityMorgantownUSA

Personalised recommendations