Waste and Biomass Valorization

, Volume 10, Issue 9, pp 2611–2625 | Cite as

Effect of Extraction Process on Composition, Antioxidant and Antibacterial Activity of Oil from Yellow Passion Fruit (Passiflora edulis Var. Flavicarpa) Seeds

  • Marlene G. Pereira
  • Giselle Maria Maciel
  • Charles Windson Isidoro Haminiuk
  • Fabiane Bach
  • Fabiane Hamerski
  • Agnes de Paula Scheer
  • Marcos L. CorazzaEmail author
Original Paper


In this study, the effect of different extraction methods including subcritical fluid extraction (SubFE) with compressed propane at 30 and 60 °C and pressures from 2 to 8 MPa, a solvent extraction using Soxhlet (SE) apparatus with two different solvents (n-hexane and ethanol) and the ultrassound-assisted extraction (UAE) with ethanol as solvent on the extraction yield, physicochemical properties, fatty acids profile and tocopherol content, antioxidant and antibacterial activities of organic yellow passion fruit (Passiflora edulis var. flavicarpa). Higher yields were obtained by SE with n-hexane (26.12%) and compressed propane at 30 °C and 8 MPa (24.68%). The physicochemical parameters were consistent with the requirements of Codex Alimentarius regarding the most popular plant oils. Higher content of unsaturated fatty acids (86.65%) and linoleic acid (68.99%) was obtained by compressed propane at 30 °C and 2 MPa. The oils obtained by Soxhlet with n-hexane and compressed propane at 60 °C and 2 MPa showed higher tocopherol content (8.22 and 5.98 mg/100 goil, respectively). All oil samples presented high antioxidant performance and showed antibacterial activity against Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Bacillus cereus. This study further confirms that organic yellow passion fruit seed oils represent a good source of essential unsaturated fatty acids and demonstrated that there is an opportunity to add value for this agroindustrial waste with the use of unconventional extraction methods such as compressed propane, a green recovery technology yet still unexplored for seed oil extraction.


Yellow passion fruit Oilseeds Compressed propane Ultrasound-assisted extraction Organic farm 



The authors are grateful to CNPq (Grant Number 305393/2016-2), CAPES and Fundação Araucária (Brazilian Agencies) for the financial support.


  1. 1.
    Carr, M.K.V.: The water relations and irrigation requirements of the date palm (Phoenix dactylifera L.): a review. Exp. Agric. 45, 333–371 (2009)CrossRefGoogle Scholar
  2. 2.
    Pacheco, A.L.V., Pagliarini, M.F., de Freitas, G.B., Santos, R.H.S., Serro, J.E., Zanuncio, J.C.: Mineral composition of pulp and production of the yellow passion fruit with organic and conventional fertilizers. Food Chem. 217, 425–430 (2017)CrossRefGoogle Scholar
  3. 3.
    Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., Deng, C.: Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. J. Supercrit. Fluids 48, 9–14 (2009)CrossRefGoogle Scholar
  4. 4.
    Barrales, F.M., Rezende, C.A., Martínez, J.: Supercritical CO2 extraction of passion fruit (Passiflora edulis sp.) seed oil assisted by ultrasound. J. Supercrit. Fluids 104, 183–192 (2015)CrossRefGoogle Scholar
  5. 5.
    Connor, W.E.: Importance of n-3 fatty acids in health and disease. Am. J. Clin. Nutr. 71, 171S–171S5S (2000)CrossRefGoogle Scholar
  6. 6.
    Tapiero, H., Nguyen Ba, G., Couvreur, P., Tew, K.: Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 56, 215–222 (2002)CrossRefGoogle Scholar
  7. 7.
    Gao, F., Yang, S., Birch, J.: Physicochemical characteristics, fatty acid positional distribution and triglyceride composition in oil extracted from carrot seeds using supercritical CO2. J. Food Compos. Anal. 45, 26–33 (2016)CrossRefGoogle Scholar
  8. 8.
    Siger, A., Dwiecki, K., Borzyszkowski, W., Turski, M., Rudzińska, M., Nogala-Kałucka, M.: Physicochemical characteristics of the cold-pressed oil obtained from seeds of Fagus sylvatica L. Food Chem. 225, 239–245 (2017)CrossRefGoogle Scholar
  9. 9.
    Benitez Benitez, R., Ortega Bonilla, R.A., Franco, J.M.: Comparison of two sesame oil extraction methods: percolation and pressed. Biotecnol. Sect. Agropecu. Agroind. 14, 10 (2016)CrossRefGoogle Scholar
  10. 10.
    Mohammed, N.K., Abd Manap, M.Y., Tan, C.P., Muhialdin, B.J., Alhelli, A.M., Hussin, A.S.M.: The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella sativa L.) Oil. Evid.-Based Complement. Altern. Med. (2016). Scholar
  11. 11.
    Zanqui, A.B., De Morais, D.R., Da Silva, C.M., Santos, J.M., Gomes, S.T.M., Visentainer, J.V., Eberlin, M.N., Cardozo-Filho, L., Matsushita, M.: Subcritical extraction of flaxseed oil with n-propane: composition and purity. Food Chem. 188, 452–458 (2015)CrossRefGoogle Scholar
  12. 12.
    Huang, W., Xue, A., Niu, H., Jia, Z., Wang, J.: Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem. 114, 1147–1154 (2009)CrossRefGoogle Scholar
  13. 13.
    Ahmad-Qasem, M.H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J.A., García-Pérez, J.V.: Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 17, 120–129 (2013)CrossRefGoogle Scholar
  14. 14.
    Esclapez, M.D., García-Pérez, J.V., Mulet, A., Cárcel, J.A.: Ultrasound-assisted extraction of natural products. Food Eng. Rev. 3, 108–120 (2011)CrossRefGoogle Scholar
  15. 15.
    Knorr, D., Zenker, M., Heinz, V., Lee, D.-U.: Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 15, 261–266 (2004)CrossRefGoogle Scholar
  16. 16.
    Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J.G., Carmona-García, R., Juárez-Barrientos, J.M., Chávez-Zamudio, R., Martínez-Sánchez, C.E.: Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason. Sonochem. 31, 429–436 (2016)CrossRefGoogle Scholar
  17. 17.
    Sicaire, A., Abert, M., Fine, F., Carré, P., Tostain, S., Chemat, F.: Ultrasonics sonochemistry ultrasound induced green solvent extraction of oil from oleaginous seeds. Ultrason. Sonochem. 31, 319–329 (2016)CrossRefGoogle Scholar
  18. 18.
    Li, T., Qu, X., Zhang, Q., Wang, Z.-Z.: Ultrasound-assisted extraction and profile characteristics of seed oil from Isatis indigotica Fort. Ind. Crops Prod. 35, 98–104 (2012)CrossRefGoogle Scholar
  19. 19.
    de Azevedo, A.A., Kopcak, U., Mohamed, R.: Extraction of fat from fermented Cupuaçu seeds with supercritical solvents. J. Supercrit. Fluids 27, 223–237 (2003)CrossRefGoogle Scholar
  20. 20.
    dos Santos Freitas, L., De Oliveira, J.V., Dariva, C., Jacques, R.A., Caramão, E.B.: Extraction of grape seed oil using compressed carbon dioxide and propane: extraction yields and characterization of free glycerol compounds. J. Agric. Food Chem. 56, 2558–2564 (2008)CrossRefGoogle Scholar
  21. 21.
    Nimet, G., Antonio, E., Palú, F., Dariva, C., Freitas, S., Medina, A., Cardozo, L.: Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane : experimental and modeling. Chem. Eng. J. 168, 262–268 (2011)CrossRefGoogle Scholar
  22. 22.
    Sparks, D., Hernandez, R., Zappi, M., Blackwell, D., Fleming, T.: Extraction of rice brain oil using supercritical carbon dioxide and propane. J. Am. Oil Chem. Soc. 83, 885–891 (2006)CrossRefGoogle Scholar
  23. 23.
    Liu, Z., Mei, L., Wang, Q., Shao, Y., Tao, Y.: Optimization of subcritical fluid extraction of seed oil from Nitraria tangutorum using response surface methodology. LWT Food Sci. Technol. 56, 168–174 (2014)CrossRefGoogle Scholar
  24. 24.
    Hegel, P.E., Mabe, G.D.B., Pereda, S., Zabaloy, M.S., Brignole, E.A.: Phase equilibria of near critical CO2 + propane mixtures with fixed oils in the LV, LL and LLV region. J. Supercrit. Fluids 37, 316–322 (2006)CrossRefGoogle Scholar
  25. 25.
    Hegel, P.E., Zabaloy, M.S., Mabe, G.D.B., Pereda, S., Brignole, E.A.: Phase equilibrium engineering of the extraction of oils from seeds using carbon dioxide + propane solvent mixtures. J. Supercrit. Fluids 42, 318–324 (2007)CrossRefGoogle Scholar
  26. 26.
    Hegel, P., Mabe, G., Brignole, E.A., Pereda, S.: Phase equilibrium engineering of jojoba oil extraction with mixed-CO2 + propane solvent. J. Supercrit. Fluids 79, 114–122 (2013)CrossRefGoogle Scholar
  27. 27.
    AOCS - American Oil Chemists’ Society.: Official Methods and Recommended Practices of the American Oil Chemists’ Society. AOCS Press, Champaign (1993)Google Scholar
  28. 28.
    Gomide, R.: Operações com sistemas sólidos granulares. Operações Unitárias, pp. 27–30 (1983) (In Portuguese) Google Scholar
  29. 29.
    Pereira, M.G., Hamerski, F., Andrade, E.F., Scheer, AdeP., Corazza, M.L.: Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. J. Supercrit. Fluids 128, 338–348 (2017)CrossRefGoogle Scholar
  30. 30.
    Correa, M., Mesomo, M.C., Pianoski, K.E., Torres, Y.R., Corazza, M.L.: Extraction of inflorescences of Musa paradisiaca L. using supercritical CO2 and compressed propane. J. Supercrit. Fluids 113, 128–135 (2016)CrossRefGoogle Scholar
  31. 31.
    Coelho, R., Kanda, L.R.S., Hamerski, F., Masson, M.L., Corazza, M.L.: Extraction of kiwifruit seed (Actinidia deliciosa) oil using compressed propane. J. Food Process. Eng. 39, 335–344 (2016)CrossRefGoogle Scholar
  32. 32.
    AOCS - American Oil Chemists’ Society: Official Methods and Recommended Practices of the American Oil Chemists’ Society. AOCS Press, Champaign (1998)Google Scholar
  33. 33.
    AOCS - American Oil Chemists’ Society: Method Cd 12be92. Official Methods and Recommended Practices of the American Oil Chemists’ Society. AOCS Press, Champaign (1992)Google Scholar
  34. 34.
    Tasioula-Margari, M., Okogeri, O.: Simultaneous determination of phenolic compounds and tocopherols in virgin olive oil using HPLC and UV detection. Food Chem. 74, 377–383 (2001)CrossRefGoogle Scholar
  35. 35.
    Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  36. 36.
    Wiegand, I., Hilpert, K., Hancock, R.E.W.: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008)CrossRefGoogle Scholar
  37. 37.
    Cardoso de Oliveira, R., Rossi, R.M., Gimenes, M.L., Jagadevan, S., Giufrida, M., Davantel, W., de Barros, S.T.: Extraction of passion fruit seed oil using supercritical CO2: a study of mass transfer and rheological property by Bayesian inference. Grasas Aceites 64, 400–406 (2013)CrossRefGoogle Scholar
  38. 38.
    Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M.: Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34, 540–560 (2017)CrossRefGoogle Scholar
  39. 39.
    De Oliveira, R.C., De Barros, S.T.D., Gimenes, M.L.: The extraction of passion fruit oil with green solvents. J. Food Eng. 117, 458–463 (2013)CrossRefGoogle Scholar
  40. 40.
    Nyanzi, S.A., Carstensen, B., Schwack, W.: A comparative study of fatty acid profiles of Passiflora seed oils from Uganda. J. Am. Oil Chem. Soc. 82, 41–44 (2005)CrossRefGoogle Scholar
  41. 41.
    Silva, A.C., Jorge, N.: Bioactive compounds of oils extracted from fruits seeds obtained from agroindustrial waste. Eur. J. Lipid Sci. Technol. 119, 1–5 (2017)Google Scholar
  42. 42.
    El-Adawy, T.A., Taha, K.M.: Characteristics and composition of different seed oils and flours. Food Chem. 74, 47–54 (2001)CrossRefGoogle Scholar
  43. 43.
    Youzbachi, N., Trabelsi, H., Elfalleh, W., Khaldi, A., Nasri, N., Tlili, N.: Fatty acids and triacylglycerols composition from Tunisian Acacia species seed oil. Arab. J. Chem. (2015). Google Scholar
  44. 44.
    Kostik, V., Memeti, S., Bauer, B.: Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 4, 112–116 (2013)Google Scholar
  45. 45.
    Lawton, C.L., Delargy, H.J., Brockman, J., Smith, F.C., Blundell, J.E.: The degree of saturation of fatty acids influences post-ingestive satiety. Br J. Nutr. 83, 473–482 (2000)CrossRefGoogle Scholar
  46. 46.
    Gutiérrez, L.F., Quiñones-Segura, Y., Sanchez-Reinoso, Z., Díaz, D.L., Abril, J.I.: Physicochemical properties of oils extracted from γ-irradiated Sacha Inchi (Plukenetia volubilis L.) seeds. Food Chem. 237, 581–587 (2017)CrossRefGoogle Scholar
  47. 47.
    Zhang, G., Ni, Y., Churchill, J., Kokot, S.: Authentication of vegetable oils on the basis of their physico-chemical properties with the aid of chemometrics. Talanta. 70, 293–300 (2006)CrossRefGoogle Scholar
  48. 48.
    Bakhshabadi, H., Mirzaei, H., Ghodsvali, A., Jafari, S.M., Ziaiifar, A.M., Farzaneh, V.: The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds oil. Ind. Crops Prod. 97, 1–9 (2017)CrossRefGoogle Scholar
  49. 49.
    Codex Stan 210: Codex Standard for Named Vegetable Oils (2009)Google Scholar
  50. 50.
    Noureddini, H., Teoh, B.C., Davis Clements, L.: Viscosities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc. 69, 1189–1191 (1992)CrossRefGoogle Scholar
  51. 51.
    Eromosele, I.C., Eromosele, C.O., Innazo, P., Njerim, P.: Studies on some seeds and seed oils. Bioresour. Technol. 64, 245–247 (1998)CrossRefGoogle Scholar
  52. 52.
    Cho, Y.J., Kim, T.E., Gil, B.: Correlation between refractive index of vegetable oils measured with surface plasmon resonance and acid values determined with the AOCS official method. LWT Food Sci. Technol. 53, 517–521 (2013)CrossRefGoogle Scholar
  53. 53.
    Gharby, S., Harhar, H., Bouzoubaa, Z., Asdadi, A., El Yadini, A., Charrouf, Z.: Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J. Saudi Soc. Agric. Sci. 16, 105–111 (2017)Google Scholar
  54. 54.
    Jorge, N., Kobori, C.N.: Caracterização dos óleos de algumas sementes de frutas como aproveitamento de resíduos industriais. Ciênc. Agrotechnol. Lavras 29, 1008–1014 (2005)CrossRefGoogle Scholar
  55. 55.
    Masson, L., Robert, P., Romero, N., Izaurieta, M., Valenzuela, S., Ortiz, J., Dobarganes, M.C.: Comportamiento de aceites poliinsaturados en la preparación de patatas fritas para consumo inmediato: formación de nuevos compuestos y comparación de métodos analíticos. Grasas Aceites 48, 273–281 (1997)CrossRefGoogle Scholar
  56. 56.
    Wells, S.R., Jennings, M.H., Rome, C., Hadjivassiliou, V., Papas, K.A., Alexander, J.S.: Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells. J. Nutr. Biochem. 21, 589–597 (2010)CrossRefGoogle Scholar
  57. 57.
    Fruhwirth, G.O., Wenzl, T., El-Toukhy, R., Wagner, F.S., Hermetter, A.: Fluorescence screening of antioxidant capacity in pumpkin seed oils and other natural oils. Eur. J. Lipid Sci. Technol. 105, 266–274 (2003)CrossRefGoogle Scholar
  58. 58.
    Gliszczyńska-świgło, A., Sikorska, E., Khmelinskii, I., Sikorski, M.: Tocopherol content in edible plant oils. Pol. J. Food Nutr. Sci. 57, 157–161 (2007)Google Scholar
  59. 59.
    Malacrida, C.R., Jorge, N.: Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Braz. Arch. Biol. Technol. 55, 127–134 (2012)CrossRefGoogle Scholar
  60. 60.
    Hussain, A., Larsson, H., Olsson, M.E., Kuktaite, R., Grausgruber, H., Johansson, E.: Is organically produced wheat a source of tocopherols and tocotrienols for health food? Food Chem. 132, 1789–1795 (2012)CrossRefGoogle Scholar
  61. 61.
    Pertuzatti, P.B., Sganzerla, M., Jacques, A.C., Barcia, M.T., Zambiazi, R.C.: Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. LWT Food Sci. Technol. 64, 259–263 (2015)CrossRefGoogle Scholar
  62. 62.
    Viganó, J., Coutinho, J.P., Souza, D.S., Baroni, N.A.F., Godoy, H.T., Macedo, J.A., Martínez, J.: Exploring the selectivity of supercritical CO2 to obtain nonpolar fractions of passion fruit bagasse extracts. J. Supercrit. Fluids 110, 1–10 (2016)CrossRefGoogle Scholar
  63. 63.
    López-Vargas, J.H., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M.: Chemical: Physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Res. Int. 51, 756–763 (2013)CrossRefGoogle Scholar
  64. 64.
    Santana, F.C., Shinagawa, F.B., Araujo, E.D.S., Costa, A.M., Mancini-Filho, J.: Chemical composition and antioxidant capacity of Brazilian passiflora seed oils. J. Food Eng. 80, 2647–2654 (2015)Google Scholar
  65. 65.
    Ferreira, B.S., De Almeida, C.G., Faza, L.P., De Almeida, A., Diniz, C.G., Da Silva, V.L., Grazul, R.M., Le Hyaric, M.: Comparative properties of amazonian oils obtained by different extraction methods. Molecules 16, 5874–5885 (2011)CrossRefGoogle Scholar
  66. 66.
    Lambert, P.: Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria. J. Appl. Microbiol. 92, 46S–54S (2002)CrossRefGoogle Scholar
  67. 67.
    Oliveira, D.A., Angonese, M., Gomes, C., Ferreira, S.R.S.: Valorization of passion fruit (Passiflora edulis sp.) by-products: sustainable recovery and biological activities. J. Supercrit. Fluids 111, 55–62 (2016)CrossRefGoogle Scholar
  68. 68.
    Palma, M., Taylor, L.T., Varela, R.M., Cutler, S.J., Cutler, H.G.: Fractional extraction of compounds from grape seeds by supercritical fluid extraction and analysis for antimicrobial and agrochemical activities. J. Agric. Food Chem. 47, 5044–5048 (1999)CrossRefGoogle Scholar
  69. 69.
    Saravanan, S., Parimelazhagan, T.: Total phenolic content, free radical scavenging and Antimicrobial activities of Passiflora subpeltata seeds. J. Appl. Pharm. Sci. 3, 67–72 (2013)Google Scholar
  70. 70.
    Zheng, C.J., Yoo, J.-S., Lee, T.-G., Cho, H.-Y., Kim, Y.-H., Kim, W.-G.: Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 579, 5157–5162 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Marlene G. Pereira
    • 1
  • Giselle Maria Maciel
    • 2
  • Charles Windson Isidoro Haminiuk
    • 2
  • Fabiane Bach
    • 1
  • Fabiane Hamerski
    • 1
  • Agnes de Paula Scheer
    • 1
  • Marcos L. Corazza
    • 1
    Email author
  1. 1.Department of Chemical EngineeringFederal University of ParanáCuritibaBrazil
  2. 2.Academic Department of Chemistry and BiologyFederal University of Technology - Paraná (UTFPR)CuritibaBrazil

Personalised recommendations