Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 8, pp 2379–2395 | Cite as

Obtaining and Optimization of Cellulose Pulp from Leaves of Agave tequilana Weber Var. Blue. Preparation of Handmade Craft Paper

  • Francisco Prieto-García
  • Edith Jiménez-Muñoz
  • Otilio A. Acevedo-Sandoval
  • Rodrigo Rodríguez-Laguna
  • Roberto A. Canales-Flores
  • Judith Prieto-MéndezEmail author
Original Paper
  • 210 Downloads

Abstract

Cellulose pulp was obtained by two processes, alkaline (NaOH) and acid (Organosolv), from residual leaves of Agave tequilana. The objective of this work was to find an added value to the agave leaves, which are a waste of the tequila industry in Mexico. In the acid pulping method, higher cellulose yields were obtained than in the alkaline pulping method; however, the decrease in the content of lignin (34–62%) or of the hemicelluloses present in the precursor was not achieved, even after bleaching. In the alkaline pulping method, lower cellulose yields were obtained; after bleaching, 95–98% of the lignin and all of the hemicelluloses were removed. The XRD patterns showed that the percentage of crystallinity of both pulps was similar with values of 49.88% for the alkaline pulping and 48.43% for the acid pulping. It was found that the percentage of moisture absorption is related to the percentage of crystallinity and the content of hemicelluloses, since when the percentage of crystallinity decreases the content of hemicelluloses and the percentage of moisture absorption increases. The papers obtained by the alkaline pulping method showed a lower percentage of humidity and greater tension resistance.

Keywords

Cellulose Agave tequilana Pulping methods Handmade paper Bleaching 

References

  1. 1.
    García Curbelo, Y., López, M.G., Bocourt, L.: Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Rev. Cuba. Cienc. Agrícola. 43(2), 175–177 (2009)Google Scholar
  2. 2.
    NORMA Oficial Mexicana NOM-059-SEMARNAT-2010: Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo (2010)Google Scholar
  3. 3.
    López Soto, J.L., Ruiz Corral, J.A., Sánchez González, J.D.J., Lépiz Ildefonso, R.: Adaptación climática de 25 especies de frijol silvestre (Phaseolus spp) en la República Mexicana. Rev. Fitotec. Mex. 28, 221–230 (2005)Google Scholar
  4. 4.
    Nobel, P.S.: Environmental Biology of Agaves and Cacti, p. 270. Cambridge University Press, New York (1988)Google Scholar
  5. 5.
    FAO: FAO Agriculture Series, No. 27. ISSN 0081–4539. Food and Agriculture Organization of the United Nations (1994)Google Scholar
  6. 6.
    Jonsson, L., Martín, C.: Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016)CrossRefGoogle Scholar
  7. 7.
    Nava-Cruz, N.Y., Medina-Morales, M.A., Martinez, J.L., Rodriguez, R., Aguilar, C.N.: Agave biotechnology: an overview. Crit. Rev. Biotechnol. 35(4), 546–549 (2015)CrossRefGoogle Scholar
  8. 8.
    Pandey, K.K.: A study of chemical structure of soft and hardwood and wood and polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 71, 1969–1975 (2002)CrossRefGoogle Scholar
  9. 9.
    Sinha-Ray, S., Yarin, A.L., Pourdeyhimi, B.: Meltblown fiber mats and their tensile strength. Polymer. 55, 4241–4247 (2014)CrossRefGoogle Scholar
  10. 10.
    Moniz, P., Lino, J., Duarte, L.C., Roseilo, L.B., Boeiru, C.G., Pereira, H., Cravalheiro, F.: Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimized mild Organosolv delignification. Bioresources. 10(2), 263–2641 (2015)CrossRefGoogle Scholar
  11. 11.
    Escoto-García, T., Vivanco-Castellanos, E. M., Lomelí-Ramírez, M. G., Arias-García, A.: Tratamiento fermentativo-químico-mecánico del bagazo de maguey (Agave tequilana Weber) para su aplicación en papel hecho a mano. Rev. Mex. Ing. Quím. 5(1), 23–27 (2006)Google Scholar
  12. 12.
    Montañez, S.J., Venegas, G.J., Vivar, V.M., Ramos, R.E.: Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana. Weber Azul. Bioagro. 3(23), 199–206 (2011)Google Scholar
  13. 13.
    Vinnet, E., Fajardo, O.: Estrategia para el mejoramiento genético de Agaves en Cuba. Temas de Ciencia y Tecnología, enero – abril, pp. 37–43 (2009)Google Scholar
  14. 14.
    Iñiguez-Covarrubias, G., Lange, S.E., Rowell, R.M.: Utilization of byproducts from the tequila industry: part 2 potential value of Agave tequilana Weber azul leaves. Biores. Technol. 77, 101–108 (2001)CrossRefGoogle Scholar
  15. 15.
    Narvaez, Z.J. y T.F. Sanchez. 2009. Agaves as a raw material, recent technologies and applications. Recent Pat. Biotechnol. 3(3), 1–7.Google Scholar
  16. 16.
    Parra, L.A., del Villar, P., Prieto, A.: Extracción de fibras de agave para elaborar papel y artesanías. Acta Univ. 20, 77–83 (2010) Número especial 3Google Scholar
  17. 17.
    Sanjay, M.R., Arpitha, G.R., Laxmana Naik, L., Gopalakrishna, K., Yogesha, B.: Applications of natural fibers and its composites: an overview. Nat. Resour. 7, 108–114 (2016)Google Scholar
  18. 18.
    [SAGARPA: Diario Oficial de la Federación 2 de mayo de 2014, Edición Vespertina, Única Sección: Se aprueba el Programa Especial Concurrente para el Desarrollo Rural Sustentable 2014–2018 (2014)Google Scholar
  19. 19.
    Camejo-Rodrigues, J.C., Ascensão, L., Ángel-Bonet, M., Valles, J.: An ethnobotanical study of medicinal and aromatic plants in the Natural Park of “Serra de São Mamede” (Portugal). J. Ethnopharmacol. 89, 199–209 (2003)CrossRefGoogle Scholar
  20. 20.
    García Mendoza, A. J.: Distribution of the genus Agave (Agavaceae) and its endemic species in Mexico. Cact. Succ. J. 74, 177–187 (2007)Google Scholar
  21. 21.
    Rosas, M.E., Fernández, J.L.: FTIR aplicada durante la deshidratación osmótica de mango Ataulfo (Magnífera indica L.). Superficies y Vacío. 25(1) 8–13 (2012)Google Scholar
  22. 22.
    AOAC: Association of Official Analytical Chemists. Official Methods of Analysis, p. 1117, 15 (Edn.). AOAC, Arlington (1995)Google Scholar
  23. 23.
    TAPPI.: Tappi Test Methods. Technical Association of the Pulp and Paper Industry. TAPPI, Atlanta (2004)Google Scholar
  24. 24.
    Ávila Núñez, R., Rivas Pérez, B., Hernández Motzezak, R., Chirinos, M.: Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias. 12(2), 129–135 (2012)Google Scholar
  25. 25.
    Park, C.H., Han, S.Y., Choi, S.K., Lee, S.H.: Preparation and properties of holocelluloce nanofibrils with different hemicelluloce contains. Bioresources. 12(3), 6298–6308 (2017)Google Scholar
  26. 26.
    NMX-N-22-1988. Método de prueba para la determinación de alfa, beta, gamma celulosa, en pulpas para papel y cartónGoogle Scholar
  27. 27.
    Selig, M. J., Viamajala, S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B.: Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23(6), 1333–1339 (2007)CrossRefGoogle Scholar
  28. 28.
    Qi, L., Lei, Y., Yuangang, Z., Minghua, Z., Ying, Z., Xiunan, Z., Rongrui, Z., Zhen, S., Jinming, H., Xiaoanan, Z., Wengang, L.: Investigation of the effects of different Organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin. Food Chem. 131, 313–317 (2012)CrossRefGoogle Scholar
  29. 29.
    Djarwanto, Tachibana, S.: Decomposition of lignin and holocellulose on Acacia mangium leaves and twigs by six fungal isolates from nature. Pak. J. Biol. Sci. 13, 604–610 (2010)CrossRefGoogle Scholar
  30. 30.
    De Naranjo, CDD, Alamilla-Beltrán, L, Gutiérrez-Lopez, G.F., Terres-Rojas, E., Solorza-Feria, J., Romero-Vargas, S., Yee-Madeira, H.T., Flores-Morales, A., Mora-Escobedo, R.: Aislamiento y caracterización de celulosas obtenidas de fibras de Agave salmiana aplicando dos métodos de extracción ácido-alcali. Rev. Mex. Cienc. Agrícolas 7, 31–43 (2016)CrossRefGoogle Scholar
  31. 31.
    Velasco, P., Soengas, P., Vilar, M., Cartea, M.E., del Rio, M.: Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. J. Am. Soc. Hort. Sci. 133(4), 551–558 (2008)CrossRefGoogle Scholar
  32. 32.
    Reyes-Agüero, J.A., Aguirre-Rivera, J.R., Peña-Valdivia, C.B.: Biología aprovechamiento de Agave lechuguilla Torr. Boletín de la Sociedad Botánica de México. 67, 75–88 (2000)Google Scholar
  33. 33.
    Sravan Kumar, S., Manoj, P., Giridhar, P.: Fourier transform infrared spectroscopy (FTIR) analysis, chlorophyll content and antioxidant properties of native and defatted foliage of green leafy vegetables. J Food Sci Technol. 52(12), 8131–8139 (2015).  https://doi.org/10.1007/s13197-015-1959-0 CrossRefGoogle Scholar
  34. 34.
    [Vega-Baudrit, J., Sibaja, M.B., Nikolaeva, S.N., Rivera, A.A.: Síntesis y caracterización de celulosa amorfa a partir de triacetato de celulosa. Rev. Soc. Quím. Perú. 80(1), 45–50 (2014)Google Scholar
  35. 35.
    Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 35, 298–307 (2011)CrossRefGoogle Scholar
  36. 36.
    [Müller-Hagedorn, M., Bockhorn, H., Krebs, L., Müller, U.: 2003. A comparative kinetic study on the pyrolysis of three different wood species. J. Anal. Appl. Pyrolysis, 6869, 231–249CrossRefGoogle Scholar
  37. 37.
    Manals, E., Pinedo, M., Giralt-Ortega, G.: Análisis termogravimetrico y térmico diferencial de diferentes biomasas vegetales. Tecnol. Quím. 31(2), 36–43 (2011)Google Scholar
  38. 38.
    Acelas, N., Ruiz, W., López, D.: Determinación de los parámetros cinéticos en la pirólisis del pino ciprés. Quim. Nova 33(7), 1500–1505 (2010)CrossRefGoogle Scholar
  39. 39.
    White, J.E., Catallo, W.J., Legendre, B.L.: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis 91(1), 1–33 (2011).  https://doi.org/10.1016/j.jaap.2011.01.004 CrossRefGoogle Scholar
  40. 40.
    Bolio G.I., Valadez A., Valeva, L. Andreeva, A.: Cellulose whiskers from agro-industrial banana wastes: isolation and characterization. Rev. Mex. Ing. Quím. 10(2), 291–299 (2011)Google Scholar
  41. 41.
    Hidalgo-Reyes, M., Caballero-Caballero, M., Hernández-Gómez, L. H., Urriolagoitia-Calderón, G.: Chemical and morphological characterization of Agave angustifolia bagasse fibers. Bot. Sci. 93(4), 807–817 (2015).  https://doi.org/10.17129/botsci.250 CrossRefGoogle Scholar
  42. 42.
    Wang, X., Thibodeau, B., Trope, M., Lin, L.M., Huang, G.T.J.: Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod. 36, 56 (2010)CrossRefGoogle Scholar
  43. 43.
    Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P.: Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym. Degrad. Stab. 96, 818–822 (2011)CrossRefGoogle Scholar
  44. 44.
    López-Martínez, A., Bolio-López, G.I., Veleva, L., Solórzano-Valencia, M., Acosta-Tejada, G., Hernández-Villegas, M.M., Salgado-Garcia, S., Córdova-Sánchez, S.: Obtaining cellulose from sugar cane (Saccharum spp.) pulp. Agroproductividad 9(7), 41–45 (2016)Google Scholar
  45. 45.
    Silos-Espino, H., Tovar-Robles, C.L., González-Cortés, N., Méndez-Gallegos, S.J., Rossel-Kipping, D.: Estudio integral del maguey (Agave salmiana): propagacion y valor nutricional. Revista de Saul Pública y Nutrición. Edición Especial No 5. 75–82. (ISSN 1870 – 0160) (2011)Google Scholar
  46. 46.
    Fioretto, A., Di Nardo, C., AmodioFuggi, P.A.: Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol. Biochem. 37(6), 1083–1091 (2005)CrossRefGoogle Scholar
  47. 47.
    Wang, N. Nobel, P.S.: Phloem transport of fructans in the Crasssulacean acid Metabolism species Agave deserti. Plant Physiol. 116, 709–714 (1998)CrossRefGoogle Scholar
  48. 48.
    Saengthongpinit, W., Sajjaanantakul, T.: Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol. Technol. 37(1), 93–100 (2005)CrossRefGoogle Scholar
  49. 49.
    Ramírez-Cortina, C.R., Alonso-Gutiérrez, M.S., Rigal, L.: Valorización de residuos agroindustriales del tequila para alimentacion de Rumiantes. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 18(3), 449–457 (2012)CrossRefGoogle Scholar
  50. 50.
    Peña–Valdivia, C.B., Sánchez–Urdaneta, A.B., Aguirre, J.R., Trejo, R.C., Cárdenas, E., Villegas, A.: Temperature and mechanical scarification on seed germination of “maguey” (Agave salmiana Otto ex Salm–Dyck). Seed Sci. Technol. 34, 47–56 (2006)CrossRefGoogle Scholar
  51. 51.
    CRT.: Principales enfermedades en el cultivo del agave. In: Virgen-Calleros, G., García-Galindo, J., Peréz-Mejía, F. (eds.) Sub-comité Línea Fitosanidad. Consejo Regulador del Tequila, A.C, 24 p. https://www.crt.org.mx. Agosto de 2015 (2009)
  52. 52.
    Veveris, C., Georghiou, K., Christodoulakis, N., Santas, P., Santas, R.: Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod. 19, 245–254 (2004)CrossRefGoogle Scholar
  53. 53.
    Yang, X., Cushman, J.C., Borland, A.M., Edwards, E.J., Wullschleger, S.D., Tuskan, G.A.: A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol. 207, 491–504 (2015).  https://doi.org/10.1111/nph.13393 CrossRefGoogle Scholar
  54. 54.
    Li, G., Fu, S.H., Zhou, A., Zhan, H.: Improved cellulose yield in the production of dissolving pulp from bamboo using acetic acid in prehydrolysis. Bioresources. 10(1), 877–886 (2015)CrossRefGoogle Scholar
  55. 55.
    Kestur, G.S., Flores-Sahagún, T.H.S., Pereira Dos Santos, L., Dos Santos, J., Mazzaroc, I., Mikowski, A.: Characterization of blue agave bagasse fibers of Mexico. Composites. 45, 153–161 (2013)CrossRefGoogle Scholar
  56. 56.
    Young, R.A.: Processing of agro-based resources into pulp and paper. In: Rowell, R.M., Young, R.A., Rowell, J.K. (eds.) Paper and Composites from Agro-based Resources, pp. 137–245. CRC Press/Lewis Publishers, New York (1997)Google Scholar
  57. 57.
    Escamilla, R.F., Macleod, T.D., Wilk, K.E., Paulos, L., Andrews, J.R.: Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J. Orthop. Sports Phys. Ther. 42(3), 208–220 (2012).  https://doi.org/10.2519/jospt.2012.3768 CrossRefGoogle Scholar
  58. 58.
    Madakadze, I.C., Coulman, B.E., McElroy, A.R., Stewart, K.A., Smith, D.L.: Evaluation of selected warm-season grasses for biomass production in areas with a short growing season. Biores. Technol. 65, 1–12 (1998).  https://doi.org/10.1016/S0960-8524(98)00039-X CrossRefGoogle Scholar
  59. 59.
    Li, H., Foston, M.B., Kumar, M.B., Samuel, R., Gao, X., Hu, F., Ragauskas, A.J., Wyman, C.E.F.: Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv. 11, 4951–4958 (2012)CrossRefGoogle Scholar
  60. 60.
    Fernández-Rodríguez, J., Robles, E., Gordobil, O., González-Alriols, M., Labidi, J.: Lignin valorisation from sidestreams produced during agriculture waste pulping and tcf bleaching. Chem. Eng. Trans. 52, 187–192 (2016)Google Scholar
  61. 61.
    González, S.M., Soto, N.O., Rutiaga, O.M., Medrano, H., Rutiaga, J.G., López, J.: Optimización del proceso de hidrólisis enzimática de una mezcla de pajas de frijol cuatro variedades (Pinto villa, Pinto saltillo, Pinto mestizo y Flor de mayo). Rev. Mex. Ing. Quím. 10(1), 17–28 (2011)Google Scholar
  62. 62.
    Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Zacchi, G.: Bioethanol, the fuel tomorrow from the residues of today. Trends Biothecnol. 24, 549–556 (2006)CrossRefGoogle Scholar
  63. 63.
    Viloria, P.R., Marfisi, S., Rondón, P.O., Rojas, B.: Obtención de celulosa microcristalina a partir de desechos agrícolas del cambur (Musa sapientum). Síntesis de celulosa microcristalina. Rev. Iberoam. Polím. 15(6), 286–300 (2014)Google Scholar
  64. 64.
    Chávez-Sifontes, M., Domine, M.E.: Lignina, estructura y aplicaciones: Métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Av. Cien. Ing. 4(4), 15–46 (2013)Google Scholar
  65. 65.
    Wang, B., Sain, M., Oskman, K.: Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl. Compos. Mater. 14, 89–103 (2007)CrossRefGoogle Scholar
  66. 66.
    López, J., Álvarez, A., Sebio, T., Zaragoza, S., Álvarez, B., Díaz, A.M., Janeiro, J., Artiaga, R.: 2016. Kinetics of thermal degradation of cellulose: analysis based on isothermal and linear heating data. Bioresources 11(3), 5870–5888Google Scholar
  67. 67.
    [Martín Sampedro, R., Eugenio, M.E., Moreno, J.A., Revilla, E., Villa, J.C.: Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresour. Technol. 153, 236–244 (2014)CrossRefGoogle Scholar
  68. 68.
    Mazzeo, M., León, L., Mejía, L.F., Guerrero, L.E., Botero, J.D.: Aprovechamiento industrial de residuos de cosecha y poscosecha de plátano en el departamento de Caldas. Rev. Educ. Ing. 9, 128–139 (2010)Google Scholar
  69. 69.
    López, Tapia, del Pilar, M.: Documentos y obre gráfica en papel. En Martha E. Romero Ramírez. Conservación de documentos analógicos y digitales. Ed. Nerea. p. 47. ISBN 978-84-16254-07-1 (2015)Google Scholar
  70. 70.
    Dhakal, H.N., Zhang, Z.Y., Richardson, M.O.W.: Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 67, 1674–1683 (2007)CrossRefGoogle Scholar
  71. 71.
    Hubber, M.A.: Prospects for maintaining strength of paperand paperboard products while using less forest resources: a review. Bioresources. 9(1), 1634–1763 (2014)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Francisco Prieto-García
    • 1
  • Edith Jiménez-Muñoz
    • 1
  • Otilio A. Acevedo-Sandoval
    • 1
  • Rodrigo Rodríguez-Laguna
    • 2
  • Roberto A. Canales-Flores
    • 1
  • Judith Prieto-Méndez
    • 2
    Email author
  1. 1.Área Académica de Química, Instituto de Ciencias Básicas e IngenieríaUniversidad Autónoma del Estado de HidalgoPachucaMexico
  2. 2.Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoPachucaMexico

Personalised recommendations