Waste and Biomass Valorization

, Volume 10, Issue 3, pp 631–640 | Cite as

Citric Acid Production by Aspergillus niger from Agro-Industrial By-Products: Molasses and Chicken Feather Peptone

  • Murat OzdalEmail author
  • Esabi Basaran Kurbanoglu
Original Paper


Citric acid is a commercially important organic acid with a wide range of applications. To reduce the cost of producing citric acid, sugar beet molasses and chicken feather peptone (CFP) were used as the sole carbon and nitrogen sources, respectively for submerged citric acid biosynthesis using Aspergillus niger. To improve the citric acid production, the parental isolate of A. niger MO-25 was improved by mutation using ethidium bromide. Citric acid production using molasses was significantly affected by CFP concentrations (1–6 g/L). The maximum citric acid concentration was determined at 4 g/L CFP and 168 h. When CFP compared to commercial peptones (casein and bacto), the highest citric acid production was obtained with CFP. Furthermore, the addition of KH2PO4 (0.15 g/L) enhanced citric acid production (68.8 g/L). These results suggested that sugar beet molasses supplemented with CFP as organic nitrogen and mineral salt sources could be utilized for the economical and efficient production of citric acid. This is the first study to investigate the influence of CFP for citric acid production.

Graphical Abstract


Aspergillus niger Chicken feather peptone Citric acid Molasses 



Authors thank the Ataturk University Scientific Research Project Fund for the financial support.


  1. 1.
    Soccol, C.R., Vandenberghe, L.P., Rodrigues, C., Pandey, A.: New perspectives for citric acid production and application. Food Technol. Biotechnol. 44(2), 141–149 (2006)Google Scholar
  2. 2.
    Prado, F.C., Vandenberghe, L.P.S., Woiciechowski, A.L., Rodrígues-León, J.A., Soccol, C.R.: Citric acid production by solid-state fermentation on a semi-pilot scale using different percentages of treated cassava bagasse. Brazilian J. Chem. Eng. 22(4), 547–555 (2005)Google Scholar
  3. 3.
    Dhillon, G.S., Brar, S.K., Verma, M., Tyagi, R.D.: Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 4(4), 505–529 (2011)Google Scholar
  4. 4.
    Show, P.L., Oladele, K.O., Siew, Q.Y., Aziz Zakry, F.A., Lan, J.C.W., Ling, T.C.: Overview of citric acid production from Aspergillus niger. Front. Life Sci. 8(3), 271–283 (2015)Google Scholar
  5. 5.
    Max, B., Salgado, J.M., Rodríguez, N., Cortés, S., Converti, A., Domínguez, J.M.: Biotechnological production of citric acid. Brazilian J. Microbiol. 41(4), 862–875 (2010)Google Scholar
  6. 6.
    Wang, B., Chen, J., Li, H., Sun, F., Li, Y., Shi, G.: Pellet-dispersion strategy to simplify the seed cultivation of Aspergillus niger and optimize citric acid production. Bioprocess Biosyst. Eng. 40(1), 45–53 (2017)Google Scholar
  7. 7.
    Zhou, P.P., Meng, J., Bao, J.: Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresour. Technol. 224, 563–572 (2017)Google Scholar
  8. 8.
    Gueguim-Kana, E.B., Oloke, J.K., Lateef, A., Oyebanji, E.: A.: Comparative evaluation of artificial neural network coupled genetic algorithm and response surface methodology for modeling and optimization of citric acid production by Aspergillus niger MCBN 297. Chem. Eng. Trans. 27, 367–402 (2012)Google Scholar
  9. 9.
    Lotfy, W., Ghanem, K., Elhelow, E.: Citric acid production by a novel Aspergillus niger isolate: I. Mutagenesis and cost reduction studies. Bioresour. Technol. 98(18), 3464–3469 (2007)Google Scholar
  10. 10.
    Rodrigues, C., de Souza Vandenberghe, L.P., Teodoro, J., Pandey, A., Soccol, C.R.: Improvement on citric acid production in solid-state fermentation by Aspergillus niger LPB BC mutant using citric pulp. Appl. Biochem. Biotechnol. 158(1), 72–87 (2009)Google Scholar
  11. 11.
    Adeoye, A.O., Lateef, A., Gueguim-Kana, E.B.: Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol. 4(4), 568–574 (2015)Google Scholar
  12. 12.
    Javed, S., Asgher, M., Sheikh, M.A., Nawaz, H.: Strain improvement through uv and chemical mutagenesis for enhanced citric acid production in molasses-based solid state fermentation. Food Biotechnol. 24(2), 165–179 (2010)Google Scholar
  13. 13.
    Ali, S., Iqbal, J.: Effect of volume of culture medium on enhanced citric acid productivity by a mutant culture of Aspergillus niger in stirred fermentor. Lett. Appl. Microbiol. 36(5), 302–306 (2003)Google Scholar
  14. 14.
    Khurshid, S., Ali, S., Ashraf, H., Qadeer, M.A., Rajoka, M.I.: Mutation of Aspergillus niger for hyperproduction of citric acid from black strap molasses. World J. Microbiol Biotechnol. 17(1), 35–37 (2001)Google Scholar
  15. 15.
    Wang, B., Li, H., Zhu, L., Tan, F., Li, Y., Zhang, L., Ding, Z., Shi, G.: High-efficient production of citric acid by Aspergillus niger from high concentration of substrate based on the staged-addition glucoamylase strategy. Bioprocess Biosyst. Eng. 40(6), 891–899 (2017)Google Scholar
  16. 16.
    Kumar, D., Verma, R., Bhalla, T.C.: Citric acid production by Aspergillus niger van. Tieghem MTCC 281 using waste apple pomace as a substrate. J. Food Sci. Technol. 47(4), 458–460 (2010)Google Scholar
  17. 17.
    Rodrigues, C., Vandenberghe, L.P., Sturm, W., Dergint, D.E., Spier, M.R., de Carvalho, J.C., Soccol, C.R.: Effect of forced aeration on citric acid production by Aspergillus sp. mutants in SSF. World J. Microbiol. Biotechnol. 29(12), 2317–2324 (2013)Google Scholar
  18. 18.
    Dhillon, G.S., Brar, S.K., Kaur, S., Verma, M.: Screening of agro-industrial wastes for citric acid bioproduction by Aspergillus niger NRRL 2001 through solid state fermentation. J. Sci. Food Agric. 93(7), 560–1567 (2013)Google Scholar
  19. 19.
    Nakata, H., Tamura, M., Shintani, T., Gomi, K.: Evaluation of baker’s yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types. J. Biosci Bioeng. 117(6), 715–719 (2014)Google Scholar
  20. 20.
    Kamarudin, N.B., Sharma, S., Gupta, A., Kee, C.G., Chik, S.M.S.B.T., Gupta, R.: Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech 7(2), 127 (2017)Google Scholar
  21. 21.
    Adelere, I.A., Lateef, A.: Keratinases: emerging trends in production and applications as novel multifunctional biocatalysts. Kuwait J. Sci. 43(3) (2016)Google Scholar
  22. 22.
    Lateef, A., Oloke, J.K., Gueguim Kana, E.B., Sobowale, B.O., Ajao, S.O., Bello, B.Y.: Keratinolytic activities of a new feather-degrading isolate of Bacillus cereus LAU 08 isolated from Nigerian soil. Int. Bioremediat. Biodegradation 64(2), 162–165 (2010). Google Scholar
  23. 23.
    Lateef, A., Adelere, I.A., Gueguim-Kana, E.B.: Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnol. Biotechnol. Equip. 29(1), 54–63 (2015). Google Scholar
  24. 24.
    Kurbanoglu, E.B.: Enhancement of citric acid production with ram horn hydrolysate by Aspergillus niger. Bioresour. Technol. 92(1), 97–101 (2004)Google Scholar
  25. 25.
    Kurbanoglu, E.B., Kurbanoglu, N.I.: Ram horn peptone as a source of citric acid production by Aspergillus niger, with a process. J. Ind. Microbiol. Biotechnol. 31(6), 289–294 (2004)Google Scholar
  26. 26.
    Pitt, J.I., Hocking, A.D.: Fungi and food spoilage. Springer, New York (2009)Google Scholar
  27. 27.
    Magnani, M., Fernandes, T., Prete, C.E.C., Homechim, M., Ono, E.Y.S., Vilas-Boas, L.A., Sartori, D., Furlaneto, M.C., Fungaro, M.H.P.: Molecular identification of Aspergillus spp. isolated from coffee beans. Sci. Agric. 62(1), 45–49 (2005)Google Scholar
  28. 28.
    A.O.A.C.: Official methods of analysis, 13th edn. Association of Official Agricultural Chemists, Washington, D.C. (1980)Google Scholar
  29. 29.
    Bidlingmeyer, B.A., Cohen, S.A., Tarvin, T.L.: Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr. B Biomed. Sci. Appl. 336(1), 93–104 (1984)Google Scholar
  30. 30.
    Marier, J.R., Boulet, M.: Direct determination of citric acid in milk with an improved pyridine-acetic anhydride method. J. Dairy Sci. 41(12), 1683–1692 (1958)Google Scholar
  31. 31.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1958)Google Scholar
  32. 32.
    Fuertes, J.B., Celada, J.D., Carral, J.M., Sáez-Royuela, M., González-Rodríguez, Á: Effects of fishmeal replacement by feather meal in practical diets for juvenile crayfish (Pacifastacus leniusculus Dana, Astacidae). Aquac. Nutr. 20(1), 36–43 (2014)Google Scholar
  33. 33.
    Pan, L., Ma, X.K., Wang, H.L., Xu, X., Zeng, Z.K., Tian, Q.Y., Zhao, P.F., Zhang, S., Yang, Z.Y., Piao, X.S.: Enzymatic feather meal as an alternative animal protein source in diets for nursery pigs. Anim. Feed Sci. Technol. 212, 112–121 (2016)Google Scholar
  34. 34.
    Taskin, M., Kurbanoglu, E.B.: Evaluation of waste chicken feathers as peptone source for bacterial growth. J. Appl. Microbiol. 111(4), 826–834 (2011)Google Scholar
  35. 35.
    Ozdal, M., Gurkok, S., Ozdal, O.G.: Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech. 7(2), 117 (2017)Google Scholar
  36. 36.
    Ozdal, M., Incekara, U., Polat, A., Gur, O., Kurbanoglu, E.B., Tasar, G.E.: Isolation of filamentous fungi associated with two common edible aquatic insects, Hydrophilus piceus and Dytiscus marginalis. J. Microbiol. Biotechnol. Food Sci. 2(1), 95–105 (2012)Google Scholar
  37. 37.
    Ikram-ul, H., Ali, S., Qadeer, M.A., Iqbal, J.: Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour. Technol. 93(2), 125–130 (2004)Google Scholar
  38. 38.
    Nagavalli, M., Ponamgi, S.P.D., Girijashankar, V., Rao, L.V.: Enhanced rifamycin SV production by submerged fermentation using Amycolatopsis mediterranei. Appl. Microbiol. Biotechnol. 99(18), 7505–7513 (2015)Google Scholar
  39. 39.
    Koti, S., Govumoni, S.P., Gentela, J., Rao, L.V.: Enhanced bioethanol production from wheat straw hemicellulose by mutant strains of pentose fermenting organisms Pichia stipitis and Candida shehatae. Springerplus 5(1), 1545 (2016)Google Scholar
  40. 40.
    Lesniak, W., Podgorski, W.: Effect of amino acids and vitamins on citric acid biosynthesis. Prog. Biotechnol. 17, 251–256 (2000)Google Scholar
  41. 41.
    Ali, S.R., Anwar, Z., Irshad, M., Mukhtar, S., Warraich, N.T.: Bio-synthesis of citric acid from single and co-culture-based fermentation technology using agro-wastes. J. Radiat. Res. Appl. Sci. 9(1), 57–62 (2016)Google Scholar
  42. 42.
    Lal, D.N., Srivastava, A.S.: Effect of amino acids on microbial production of citric acid by Aspergillus niger. Zentralbl. Mikrobiol. 137(1), 31–35 (1982)Google Scholar
  43. 43.
    Akram, M.: Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 68(3), 475–478 (2014)Google Scholar
  44. 44.
    Bari, M.N., Alam, M.Z., Muyibi, S.A., Jamal, P.: Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs. Bioresour. Technol. 100, 3113–3120 (2009)Google Scholar
  45. 45.
    Pera, L.M., Callieri, D.A.: Influence of calcium on fungal growth and citric acid production during fermentation of a sugarcane molasses-based medium by a strain of Aspergillus niger. World J. Microbiol. Biotechnol. 15(5), 647–649 (1999)Google Scholar
  46. 46.
    Haq, I.U., Ali, S., Qadeer, M.A., Iqbal, J.: Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger using molasses based media. Process Biochem. 37(10), 1085–1090 (2002)Google Scholar
  47. 47.
    Kurbanoglu, E.B., Ozdal, M., Ozdal, O.G., Algur, O.F.: Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Brazilian J. Microbiol. 46(2), 631–637 (2015)Google Scholar
  48. 48.
    Berovic, M., Rošelj, M., Wondra, M.: Possibilities of redox potential regulation in submerged citric acid bioprocessing on beet molasses substrate. Food Technol. Biotechnol. 38(3), 193–201 (2000)Google Scholar
  49. 49.
    Lotfy, W.A.: Gelatin net hydrolyzate: a novel enhancer for citric acid production by Aspergillus niger. Res. J. Microbiol. 5(11), 1131–1137 (2006)Google Scholar
  50. 50.
    Çevrimli, B.S., Yasar, A., Kariptas, E.: Effects of fermentation conditions on citric acid production from beet molasses by Aspergillus niger. Asian J. Chem. 21(4), 3211–3218 (2009)Google Scholar
  51. 51.
    Lotfy, W., Ghanem, K., Elhelow, E.: Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Bioresour. Technol. 98(18), 3470–3477 (2007)Google Scholar
  52. 52.
    Mostafa, Y.S., Alamri, S.A.: Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger. Saudi. J. Biol. Sci. 19(2), 241–246 (2012)Google Scholar
  53. 53.
    Nadeem, A., Syed, Q., Baig, S., Irfan, H., Nadeem, M.: Enhanced production of citric acid by Aspergillus niger M-101 using lower alcohols. Turk. J. Biochem. 35(1), 7–13 (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Science FacultyAtaturk UniversityErzurumTurkey

Personalised recommendations