Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure

  • Juan Gaibor-Chávez
  • Zulay Niño-Ruiz
  • Borja Velázquez-Martí
  • Araceli Lucio-Quintana
Original Paper


For the economically depressed communities such as of those in the Canton Guaranda, Ecuador, to generate their own energy, from organic waste is very important because they are sometimes insulated and its gas and electricity supply is very deficient. The aim of this research, was to determine the feasibility of anaerobic co-digestion of wasted cabbage from the town’s market in Guaranda, Ecuador, and livestock manure. Two variables were studied: temperature of the process and the percentage of cabbage and livestock manure. Biogas quantity and kinetic parameters were evaluated. Kinetic model were analyzed by minimizing the mean percentage of error between the observed values (measured experimentally) and predicted, using the Runge–Kutta of order 4 for solving the system of differential equations obtained from mass balance. The results showed that a 50–50% ratio cabbage-manure at 30 °C temperature gave the highest production of biogas achieved is (389.47 cm3 N/g initial SV) with a composition of 61% methane. The kinetic parameters found were µmax = 0.1053 day−1; Ks = 0.1153 mg/l; Y = 0.00246 g VSS /g COD and Kdec = 0.001005 day−1.


Biogas production Bacterial kinetics Co-digestion Cabbage Rural development 



This research work has been carried out inside the cooperation framework funded by the ADSIDEO program of the Centro de Cooperación al Desarrollo (CCD) of Universidad Politécnica de Valencia (Spain), in collaboration with the Centro de Estudios de la Biomasa (CEB), Universidad Estatal de Bolívar, Guaranda, Ecuador. The participation of Dr. Sergio Pérez in this work was possible thanks to funding from the Ecuadorian Government by means of the PROMETEO program, led by the Secretaría Nacional de Educación Superior, Ciencia y Tecnología (SENESCYT).


  1. 1.
    Alkaya, E., Erguder, T.H., Demirer, G.N.: Effect of operational parameters on anaerobic co-digestion of dairy cattle manure and agricultural residues: a case study for the Kahramanmaras region in Turkey. Eng. Life Sci. 10, 552–559 (2010)CrossRefGoogle Scholar
  2. 2.
    Angelidaki, I., Ahring, B.K.: Effects of free long fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37(6), 808–812 (1992)CrossRefGoogle Scholar
  3. 3.
    Angelidaki, I., Ahring, B.K.: Effect of the clay mineral bentonite on ammonia inhibition of anaerobic thermophilic reactors degrading animal waste. Biodegradation. 3, 409–414 (1993)CrossRefGoogle Scholar
  4. 4.
    Angelidaki, I., Ahring, B.K.: Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28(3), 727–731 (1994)CrossRefGoogle Scholar
  5. 5.
    APHA: Standard Methods for the Examination of Water and Wastewater. (2005). 21th edn. Washington, DC. American Public Health AssociationGoogle Scholar
  6. 6.
    Callaghan, F., Wase, J., Thayanithy, K., Forster, C.: Co-digestion of waste organic solids: batch studies. Biores. Technol. 67, 117–122 (1999)CrossRefGoogle Scholar
  7. 7.
    Campos-Pozualo A.E.: Optimización de la digestión anaerobia de purines de cerdo mediante codigestión con residuos orgánicos de la industria agroalimentaria. Tesis de doctorado Universidad de Lleida. España (2001)Google Scholar
  8. 8.
    Cendales, E.: Producción de biogás mediante la codigestión anaeróbica de la mezcla de residuos cítricos y estiércol bovino para su utilización como fuente de energía renovable. Tesis de Magister en Ingeniería Mecánica. Universidad Nacional de Colombia. Bogotá, D.C., Colombia (2011)Google Scholar
  9. 9.
    Chapra, S., Canale, R.: Métodos Numéricos para Ingenieros, 5ta edición. Mc Graw Hill. pp. 1001 (2007)Google Scholar
  10. 10.
    Chynoweth, D.P., Wilkie, A.C., Owens, J.M.: (1998). Anaerobic processing of piggery wastes: a review. Proceedings of the ASAE Annual International Meeting, Orlando, Florida, USAGoogle Scholar
  11. 11.
    Corsetti, A., Perpetuini, G., Schirone, M., Tofalo, R., Suzzi, G.: Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front. Microbiol. 3, 248 (2012). CrossRefGoogle Scholar
  12. 12.
    Demirbas, A.H., Demirbas, I.: Importance of rural bioenergy for developing countries. Energy Convers. Manag. 48, 2386–2398 (2007)CrossRefGoogle Scholar
  13. 13.
    Díaz, J.P., Reyes, I.P., Lundin, M., Horváth, I.S.: Bioresource technology. Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 102, 10834–10840 (2011)Google Scholar
  14. 14.
    Fields, T.D., Lys, T.Z., Vincent, L.: Empirical research on accounting choice. J. Acc. Econ. 31(1–3), 255–307 (2001)CrossRefGoogle Scholar
  15. 15.
    Gaibor-Chávez, S., Pérez-Pacheco, B., Velázquez-Martí, Z., Niño-Ruiz, V., Domínguez- Narváez: Dendrometric characterization of corn cane residues and 1 drying models in natural conditions in bolivar province (Ecuador). Renew. Energy. 86, 745–750 (2016)CrossRefGoogle Scholar
  16. 16.
    Hashimoto, A.G.: Ammonia Inhibition of methanogenesis from cattle wastes. Agric. Wastes. 17, 241–261 (1986)CrossRefGoogle Scholar
  17. 17.
    Hashimoto, A.G.: Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biological Wastes. 28, 247–255 (1989)CrossRefGoogle Scholar
  18. 18.
    Jih-Gaw, L., Ying-Shih, M., Allen, C., Cheng-Lung, H.: BMP test on chemically pretreated sludge. Biores. Technol. 68, 187–192 (1999)CrossRefGoogle Scholar
  19. 19.
    Kaffle, G.P., Kim, S.H., y Sung, K.: Batch anaerobic co-digestion of Kimchi factory waste silage and swine manure under mesophilic conditions. Biores. Technol. 124, 489–494 (2012)CrossRefGoogle Scholar
  20. 20.
    Kafle, G.K., Bhattarai, S., Kim, S.H., Chen, L.D.: Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study. Environ. Technol. 35, 2708–2717 (2014)  CrossRefGoogle Scholar
  21. 21.
    Khanal, S.: Anaerobic Biotechnology for Bioenergy Production—Principles and Applications. Blackwell Publishing, Iowa (2008)CrossRefGoogle Scholar
  22. 22.
    Li, R., Chen, S., Li, X., Lar, J.S., et al.: Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels. 23, 2225–2228 (2009)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Hua, D., Mu, H., Xu, H., Jin, F., Zhang, X.: Conversion of vegetable wastes to organic acids in leaching bed reactor: Performance and bacterial community analysis. J. Biosci. Bioenergy 124(2), 195–203 (2017)CrossRefGoogle Scholar
  24. 24.
    Lomas, J.M., Urbano, C., Camarero, L.M.: Evaluation of a pilot scale downflow stationary fixed film anaerobic reactor treating piggery slurry in the mesophilic range. Biomass Bioenergy. 17, 49–58 (1999)CrossRefGoogle Scholar
  25. 25.
    Masse, D.I., Talbot, G., Gilbert, Y.: On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Anim. Feed Sci. Technol. 166, 436–445 (2011)CrossRefGoogle Scholar
  26. 26.
    Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949)CrossRefGoogle Scholar
  27. 27.
    Pagés Díaz, J., Pereda Reyes, I., Lundin, M., Sárvári Horváth, I.: Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 102(23), 10834–10840 (2011)CrossRefGoogle Scholar
  28. 28.
    Patra, J.K., Das, G., Paramithiotis, S., Shin, H.: Kimchi and other widely consumed traditional fermented foods of korea: A review. Front. Microbiol. 7, 1493 (2016)Google Scholar
  29. 29.
    Robbins, J.E., Gerhardt, S.A., Kappel, T.J.: Effects of total amonia on anaerobic digestion and an example of digestor performance from cattlemanure-protein mixture. Biol. Wastes. 27, 1–4 (1989)CrossRefGoogle Scholar
  30. 30.
    Sakar, S., Yetilmezsoy, K., Kocak, E.: Anaerobic digestion technology in poultry and livestock waste treatment—a literature review. Waste Manag. Res. 27, 3–18 (2009)CrossRefGoogle Scholar
  31. 31.
    Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., et al.: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Biores. Technol. 144, 80–85 (2013)CrossRefGoogle Scholar
  32. 32.
    Sonnand, J.R., Goudar, C.T.: (2004). Solution of the Haldane equation for substrate inhibition enzyme kinetics using the decomposition method. Math. Comput. Modelling 40(5–6), 573–582MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Steffen, R., Szolar, O., Braun, R.: Feedstocks for anaerobic digestion. Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna (1998)Google Scholar
  34. 34.
    Strick, D.P, Domnanovich, A.M., Holubar, P.: A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem. 41, 1235–1238 (2006)CrossRefGoogle Scholar
  35. 35.
    Trejos, V.M., Fontalvo, A.J., Garcia, M.A.G.: Descripción matemática y análisis de estabilidad de procesos fermentativos. Dyna, vol. 76, núm. 158, junio, 2009, pp. 111–121 (2009)Google Scholar
  36. 36.
    Trujillo, D., Pérez, J.F., Cebreros, F.J.: Energy recovery from wastes. Anaerobic digestion of tomato plant mixed with rabbit wastes. Biores. Technol. 45, 81–83 (1993)CrossRefGoogle Scholar
  37. 37.
    Wang, J.: Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Front. Energy Res. 2, 10 (2014)Google Scholar
  38. 38.
    Zaher, U., Rongping, L., Jeppsson, U., Steyer, J., Chen, S.: GISCOD: general integrated solid waste co-digestion model. Water Res. 43, 2717–2727 (2009)CrossRefGoogle Scholar
  39. 39.
    Zeeman, G., Wiegant, W.M., Koster-Treffers, M.E., Lettinga, G.: The influence of total ammonia concentration on the thermophilic digestion of cow manure. Agric. Wastes. 14, 19–35 (1985)CrossRefGoogle Scholar
  40. 40.
    Zhang, L., Xu, C., Champagne, P.: Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 51, 969–982 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo Biomasa, Centro de Investigaciones del Ambiente, Departamento de InvestigaciónUniversidad Estatal de BolívarGuarandaEcuador
  2. 2.Departamento de Ingeniería Rural y Agroalimentaria, Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations