Advertisement

Waste and Biomass Valorization

, Volume 9, Issue 12, pp 2349–2359 | Cite as

Effect of Operating Conditions on Separation of H2S from Biogas Using a Chemical Assisted PDMS Membrane Process

  • Ebrahim Tilahun
  • Erkan Sahinkaya
  • Bariş Çalli
Original Paper

Abstract

Hydrogen sulfide (H2S) is an undesirable impurity that has to be removed from biogas to avoid the corrosion of co-generation units. In the present study, we evaluated the potential of a gas–liquid membrane contactor process for selective removal of H2S from biogas. The effects of biogas retention time (GRT), membrane thickness and liquid absorbent pH were investigated. A dilute sodium hydroxide solution was used as absorbent. The results revealed that H2S removal efficiency (RE) improved with increasing GRT and absorbent pH, and decreased with increasing membrane thickness. When GRT reduced from 19 to 3.4 min, the RE of H2S and CO2 decreased by over 2.5 and 5.2 times, respectively. In contrast, a higher desulfurization selectivity was observed with lower GRT and thicker membranes. The CH4 content of the treated biogas increased along with increasing GRT and was enriched from 60% to a maximum of 87% with only 4.68% loss. The SEM–EDS analysis confirmed the deposition of inorganics such as Ca, Mg, S and Si on the membrane surface. However, any membrane clogging and fouling problem was not observed. In summary, the novel gas–liquid polydimethylsiloxane membrane contactor tested in this study has performed well in selective removal of H2S from biogas and is expected to be a promising alternative to conventional desulfurization processes.

Keywords

Biogas Desulfurization Inorganics deposition CH4 content Membrane separation 

Notes

Acknowledgements

This study was financially supported by YTB (Presidency for Turks Abroad and Related Communities) and Marmara University Scientific Research Committee BAPKO (Project No. FEN-C-DRP-070317-0109).

References

  1. 1.
    Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484 (2009).  https://doi.org/10.1016/j.biortech.2008.12.046 CrossRefGoogle Scholar
  2. 2.
    Zhang, R., Brown, R.C., Suby, A., Cummer, K.: Catalytic destruction of tar in biomass derived producer gas. Energy Convers. Manag. 45, 995–1014 (2004).  https://doi.org/10.1016/j.enconman.2003.08.016 CrossRefGoogle Scholar
  3. 3.
    Marzouk, S.A.M., Al-Marzouqi, M.H., Teramoto, M., Abdullatif, N., Ismail, Z.M.: Simultaneous removal of CO2 and H2S from pressurized CO2–H2S–CH4 gas mixture using hollow fiber membrane contactors. Sep. Purif. Technol. 86, 88–97 (2012).  https://doi.org/10.1016/j.seppur.2011.10.024 CrossRefGoogle Scholar
  4. 4.
    Poloncarzova, M., Vejrazka, J., Vesely, V., Izak, P.: Effective purification of biogas by a condensing-liquid membrane. Angew. Chem. Int. Ed. 50, 669–671 (2011).  https://doi.org/10.1002/anie.201004821 CrossRefGoogle Scholar
  5. 5.
    Panza, D., Belgiorno, V.: Hydrogen sulphide removal from landfill gas. Process Saf. Environ. Prot. 88, 420–424 (2010).  https://doi.org/10.1016/j.psep.2010.07.003 CrossRefGoogle Scholar
  6. 6.
    Asri, O., Hafidi, I.E., Afilal, M.E.: Comparison of biogas purification by different substrates and construction of a biogas purification system. Waste Biomass Valoriz. 6, 459–464 (2015).  https://doi.org/10.1007/s12649-015-9378-z CrossRefGoogle Scholar
  7. 7.
    Kurchania, A.K., Panwar, N.L., Pagar Savita, D.: Improved biogas stove with scrubbing unit for household use. Waste Biomass Valoriz. 2, 397–402 (2011).  https://doi.org/10.1007/s12649-011-9080-8 CrossRefGoogle Scholar
  8. 8.
    Awe, O.W., Zhao, Y., Nzihou, A., Minh, D.P., Lyczko, N.: A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz. 8, 267 (2017)CrossRefGoogle Scholar
  9. 9.
    Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35, 1633–1645 (2011).  https://doi.org/10.1016/j.biombioe.2011.02.033 CrossRefGoogle Scholar
  10. 10.
    Gabelman, A., Hwang, S.-T.: Hollow fiber membrane contactors. J. Memb. Sci. 159, 61–106 (1999).  https://doi.org/10.1016/S0376-7388(99)00040-X CrossRefGoogle Scholar
  11. 11.
    Klaassen, R., Feron, P.H.M., Jansen, A.E.: Membrane contactors in industrial applications. Chem. Eng. Res. Des. 83, 234–246 (2005).  https://doi.org/10.1205/cherd.04196 CrossRefGoogle Scholar
  12. 12.
    Belaissaoui, B., Claveria-Baro, J., Lorenzo-Hernando, A., Albarracin Zaidiza, D., Chabanon, E., Castel, C., Rode, S., Roizard, D., Favre, E.: Potentialities of a dense skin hollow fiber membrane contactor for biogas purification by pressurized water absorption. J. Memb. Sci. 513, 236–249 (2016).  https://doi.org/10.1016/j.memsci.2016.04.037 CrossRefGoogle Scholar
  13. 13.
    Qi, Z., Cussler, E.L.: Microporous hollow fibers for gas absorption: I—mass transfer in the liquid. J. Memb. Sci. 23, 321–332 (1985).  https://doi.org/10.1016/S0376-7388(00)83149-X CrossRefGoogle Scholar
  14. 14.
    Qi, Z., Cussler, E.L.: Microporous hollow fibers for gas absorption: II—mass transfer across the membrane. J. Memb. Sci. 23, 333–345 (1985).  https://doi.org/10.1016/S0376-7388(00)83150-6 CrossRefGoogle Scholar
  15. 15.
    Karoor, S., Sirkar, K.K.: Gas absorption studies in microporous hollow fiber membrane modules. Ind. Eng. Chem. Res. 32, 674–684 (1993).  https://doi.org/10.1021/ie00016a014 CrossRefGoogle Scholar
  16. 16.
    Poddar, T.K., Majumdar, S., Sirkar, K.K.: Membrane-based absorption of VOCs from a gas stream. AIChE J. 42, 3267–3282 (1996)CrossRefGoogle Scholar
  17. 17.
    Mavroudi, M., Kaldis, S.P., Sakellaropoulos, G.P.: A study of mass transfer resistance in membrane gas-liquid contacting processes. J. Memb. Sci. 272, 103–115 (2006).  https://doi.org/10.1016/j.memsci.2005.07.025 CrossRefGoogle Scholar
  18. 18.
    Keshavarz, P., Fathikalajahi, J., Ayatollahi, S.: Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. J. Hazard. Mater. 152, 1237–1247 (2008).  https://doi.org/10.1016/j.jhazmat.2007.07.115 CrossRefGoogle Scholar
  19. 19.
    Keshavarz, P., Fathikalajahi, J., Ayatollahi, S.: Mathematical modeling of the simultaneous absorption of carbon dioxide and hydrogen sulfide in a hollow fiber membrane contactor. Sep. Purif. Technol. 63, 145–155 (2008).  https://doi.org/10.1016/j.seppur.2008.04.008 CrossRefGoogle Scholar
  20. 20.
    Atchariyawut, S., Jiraratananon, R., Wang, R.: Separation of CO2 from CH4 by using gas-liquid membrane contacting process. J. Memb. Sci. 304, 163–172 (2007).  https://doi.org/10.1016/j.memsci.2007.07.030 CrossRefGoogle Scholar
  21. 21.
    Wang, R., Zhang, H.Y., Feron, P.H.M., Liang, D.T.: Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep. Purif. Technol. 46, 33–40 (2005).  https://doi.org/10.1016/j.seppur.2005.04.007 CrossRefGoogle Scholar
  22. 22.
    Tilahun, E., Sahinkaya, E., Çalli, B.: A hybrid membrane gas absorption and bio-oxidation process for the removal of hydrogen sulfide from biogas. Int. Biodeterior. Biodegrad. 127, 69–76 (2018).  https://doi.org/10.1016/j.ibiod.2017.11.015 CrossRefGoogle Scholar
  23. 23.
    Al-Marzouqi, M.H., Marzouk, S.A.M., El-Naas, M.H., Abdullatif, N.: CO2 removal from CO2–CH4 gas mixture using different solvents and hollow fiber membranes. Ind. Eng. Chem. Res. 48, 3600–3605 (2009).  https://doi.org/10.1021/ie800977z CrossRefGoogle Scholar
  24. 24.
    Al-saffar, H.B., Ozturk, B., Hughes, R.: A comparison of porous and non-porous gas-liquid membrane contactors for gas separation. Chem. Eng. Res. Des. 75, 685–692 (1997).  https://doi.org/10.1205/026387697524182 CrossRefGoogle Scholar
  25. 25.
    Tilahun, E., Bayrakdar, A., Sahinkaya, E., Çalli, B.: Performance of polydimethylsiloxane membrane contactor process for selective hydrogen sulfide removal from biogas. Waste Manag. 1–8 (2017).  https://doi.org/10.1016/j.wasman.2017.01.011 CrossRefGoogle Scholar
  26. 26.
    Cord-Ruwisch, R.: A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4, 33–36 (1985).  https://doi.org/10.1016/0167-7012(85)90005-3 CrossRefGoogle Scholar
  27. 27.
    AWWA A.: WEF, standard methods for the examination of water and wastewater. (2005)Google Scholar
  28. 28.
    Bayrakdar, A., Tilahun, E., Calli, B.: Biogas desulfurization using autotrophic denitrification process. Appl. Microbiol. Biotechnol. 100, 939–948 (2016).  https://doi.org/10.1007/s00253-015-7017-z CrossRefGoogle Scholar
  29. 29.
    Ramos, I., Fdz-Polanco, M.: Microaerobic control of biogas sulphide content during sewage sludge digestion by using biogas production and hydrogen sulphide concentration. Chem. Eng. J. 250, 303–311 (2014).  https://doi.org/10.1016/j.cej.2014.04.027 CrossRefGoogle Scholar
  30. 30.
    Baker, R.W.: Membrane Technology and Application. Wiley, New York (2004)CrossRefGoogle Scholar
  31. 31.
    Heile, S., Rosenberger, S., Parker, A., Jefferson, B., McAdam, E.J.: Establishing the suitability of symmetric ultrathin wall polydimethylsiloxane hollow-fibre membrane contactors for enhanced CO2 separation during biogas upgrading. J. Memb. Sci. 452, 37–45 (2014).  https://doi.org/10.1016/j.memsci.2013.10.007 CrossRefGoogle Scholar
  32. 32.
    Raghunath, B., Hwang, S.T.: General treatment of liquid-phase boundary layer resistance in the pervaporation of dilute aqueous organics through tubular membranes. J. Memb. Sci. 75, 29–46 (1992).  https://doi.org/10.1016/0376-7388(92)80004-4 CrossRefGoogle Scholar
  33. 33.
    Brookes, P.R., Livingston, A.G.: Aqueous-aqueous extraction of organic pollutants through tubular silicone rubber membranes. J. Memb. Sci. 104, 119–137 (1995).  https://doi.org/10.1016/0376-7388(95)00020-D CrossRefGoogle Scholar
  34. 34.
    Nii, S., Takeuchi, H., Takahashi, K.: Removal of CO2 by gas absorption across a polymeric membrane. J. Chem. Eng. Jpn. 25, 67–72 (1992)CrossRefGoogle Scholar
  35. 35.
    Stern, S.A.: Polymers for gas separations: the next decade. J. Memb. Sci. 94, 1–65 (1994)CrossRefGoogle Scholar
  36. 36.
    Mudler, M.: Basic Principles of Membrane Technology. Springer, New York (1996)Google Scholar
  37. 37.
    Stern, A., Bhide, B.D.: Permeability of silicone polymers to ammonia and hydrogen sulfide. J. Appl. Polym. Sci. 38, 2131–2147 (1989)CrossRefGoogle Scholar
  38. 38.
    Chatterjee, G., Houde, A.A., Stern, S.A.: Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. J. Memb. Sci. 135, 99–106 (1997)CrossRefGoogle Scholar
  39. 39.
    Livingston, A.G.: Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters. J. Chem. Technol. Biotechnol. 60, 117–124 (1994).  https://doi.org/10.1002/jctb.280600202 CrossRefGoogle Scholar
  40. 40.
    Chuichulcherm, S., Nagpal, S., Peeva, L., Livingston, A.: Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 76, 61–68 (2001)CrossRefGoogle Scholar
  41. 41.
    Smet, E., Lens, P., Van Langenhove, H.: Treatment of waste gases contaminated with odorous sulfur compounds. Crit. Rev. Environ. Sci. Technol. 28, 89–117 (1998)CrossRefGoogle Scholar
  42. 42.
    González-Sánchez A., Revah S., Deshusses M.A.: Alkaline biofiltration of H2S odors. Environ. Sci. Technol. 42, (2008)Google Scholar
  43. 43.
    Wang, R., Li, D.F., Liang, D.T.: Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chem. Eng. Process. Process Intensif. 43, 849–856 (2004).  https://doi.org/10.1016/S0255-2701(03)00105-3 CrossRefGoogle Scholar
  44. 44.
    Yan, S.P., Fang, M.X., Zhang, W.F., Wang, S.Y., Xu, Z.K., Luo, Z.Y., Cen, K.F.: Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process. Technol. 88, 501–511 (2007).  https://doi.org/10.1016/j.fuproc.2006.12.007 CrossRefGoogle Scholar
  45. 45.
    Leveling, T.: The relationship between pH and conductivity in a lithium contaminated, de-ionized water system. fermilab-pbar-note-674, 1–11 (2002)Google Scholar
  46. 46.
    Attaway, H., Gooding, C.H., Schmidt, M.G.: Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams. J. Ind. Microbiol. Biotechnol. 28, 245–251 (2002).  https://doi.org/10.1038/sj/jim/7000235 CrossRefGoogle Scholar
  47. 47.
    Côté, P., Bersillon, J.L., Huyard, A.: Bubble-free aeration using membranes: mass transfer analysis. J. Memb. Sci. 47, 91–106 (1989).  https://doi.org/10.1016/S0376-7388(00)80862-5 CrossRefGoogle Scholar
  48. 48.
    Yurtsever, A., Çinar, Ö, Sahinkaya, E.: Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J. Memb. Sci. 511, 228–237 (2016).  https://doi.org/10.1016/j.memsci.2016.03.044 CrossRefGoogle Scholar
  49. 49.
    Alvarez-Hornos, F.J., Volckaert, D., Heynderickx, P.M., Van Langenhove, H.: Performance of a composite membrane bioreactor for the removal of ethyl acetate from waste air. Bioresour. Technol. 102, 8893–8898 (2011).  https://doi.org/10.1016/j.biortech.2011.06.064 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ebrahim Tilahun
    • 1
  • Erkan Sahinkaya
    • 2
  • Bariş Çalli
    • 1
  1. 1.Department of Environmental EngineeringMarmara UniversityIstanbulTurkey
  2. 2.Department of BioengineeringIstanbul Medeniyet UniversityIstanbulTurkey

Personalised recommendations