Waste and Biomass Valorization

, Volume 10, Issue 6, pp 1731–1740 | Cite as

Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application

  • Izan Izwan MisnonEmail author
  • Nurul Khairiyyah Mohd Zain
  • Rajan JoseEmail author
Original Paper


Electrochemical charge storage of physically and chemically activated carbon synthesized from oil palm kernel shell (PKS) in three different aqueous electrolytes (1 M H2SO4, 1 M Na2SO4 and 6 M KOH) are presented. Coin type CR2032 cells fabricated using the PKS ACs electrodes separated by fiber glass separator and electrolyte are used as devices for measurements. Achievable operating potential for these devices varied as H2SO4 (1.0 V) < KOH (1.2 V) < Na2SO4 (2.0 V). The highest energy density was obtained in Na2SO4 electrolyte (7.4 Wh kg−1) at a power density of 300 W kg−1. The device stability cycle at low current density (0.5 A g−1) for 3500 times showed capacitance retention in range of 78–114% in all devices.


Renewable materials Biomass Electrochemical capacitors Aqueous electrolyte Energy storage Symmetric supercapacitors 



This work was supported by UMP Research Grant (RDU150354) and UMP Pre-Commercialization Fund (UIC 160305).

Supplementary material

12649_2018_196_MOESM1_ESM.doc (12.7 mb)
Supplementary material 1 (DOC 12970 KB)


  1. 1.
    Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). CrossRefGoogle Scholar
  2. 2.
    Arvind, D., Hegde, G.: Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications: a review. RSC Adv. 5, 88339–88352 (2015). CrossRefGoogle Scholar
  3. 3.
    Jose, R., Krishnan, S.G., Vidyadharan, B., Misnon, I.I., Harilal, M., Aziz, R.A., Ismail, J., Yusoff, M.M.: Supercapacitor electrodes delivering high energy and power densities. Mater. Today Proc. 3, S48–S56 (2016). CrossRefGoogle Scholar
  4. 4.
    Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., Yi, B.: High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56, 146–154 (2013). CrossRefGoogle Scholar
  5. 5.
    Wang, R., Wang, P., Yan, X., Lang, J., Peng, C., Xue, Q.: Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. Interfaces 4, 5800–5806 (2012). CrossRefGoogle Scholar
  6. 6.
    Teo, E.Y.L., Muniandy, L., Ng, E.-P., Adam, F., Mohamed, A.R., Jose, R., Chong, K.F.: High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 192, 110–119 (2016). CrossRefGoogle Scholar
  7. 7.
    Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., Moreno-Castilla, C.: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 111, 185–190 (2012). CrossRefGoogle Scholar
  8. 8.
    Arie, A.A., Kristianto, H., Halim, M., Lee, J.K.: Synthesis and modification of activated carbon originated from Indonesian local orange peel for lithium ion capacitor’s cathode. J. Solid State Electrochem. (2016). Google Scholar
  9. 9.
    Misnon, I.I., Zain, N.K.M., Aziz, R.A., Vidyadharan, B., Jose, R.: Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 174, 78–86 (2015). CrossRefGoogle Scholar
  10. 10.
    Lee, S.G., Park, K.H., Shim, W.G., balathanigaimani, M.S., Moon, H.: Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. J. Ind. Eng. Chem. 17, 450–454 (2011). CrossRefGoogle Scholar
  11. 11.
    Choi, J., Kim, N.R., Jin, H.-J., Yun, Y.S.: Nanoporous pyropolymer nanosheets fabricated from renewable bio-resources for supercapacitors. J. Ind. Eng. Chem. 43, 158–163 (2016). CrossRefGoogle Scholar
  12. 12.
    Adinaveen, T., Kennedy, L.J., Vijaya, J.J., Sekaran, G.: Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse. J. Ind. Eng. Chem. 19, 1470–1476 (2013). CrossRefGoogle Scholar
  13. 13.
    Shrestha, L.K., Adhikari, L., Shrestha, R.G., Adhikari, M.P., Adhikari, R., Hill, J.P., Pradhananga, R.R., Ariga, K.: Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C1/C2 alcohol discrimination. Sci. Technol. Adv. Mater. 17, 483–492 (2016). CrossRefGoogle Scholar
  14. 14.
    Adhikari, M.P., Adhikari, R., Shrestha, R.G., Rajendran, R., Adhikari, L., Bairi, P., Pradhananga, R.R., Shrestha, L.K., Ariga, K.: Nanoporous activated carbons derived from agro-waste corncob for enhanced electrochemical and sensing performance. Bull. Chem. Soc. Jpn. 88, 1108–1115 (2015). CrossRefGoogle Scholar
  15. 15.
    Zhang, J., Gong, L., Sun, K., Jiang, J., Zhang, X.: Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J. Solid State Electrochem. 16, 2179–2186 (2012). CrossRefGoogle Scholar
  16. 16.
    Lim, W.C., Srinivasakannan, C., Balasubramanian, N.: Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J. Anal. Appl. Pyrolysis 88, 181–186 (2010). CrossRefGoogle Scholar
  17. 17.
    Agensi Inovasi Malaysia: National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Biomass Industry. Agensi Inovasi Malaysia, Selangor (2013)Google Scholar
  18. 18.
    Huang, C.-C., Chen, Y.-Z.: Electrochemical performance of supercapacitors with KOH activated mesophase carbon microbead electrodes. J. Taiwan Inst. Chem. Eng. 44, 611–616 (2013). CrossRefGoogle Scholar
  19. 19.
    Biswal, M., Banerjee, A., Deo, M., Ogale, S.: From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249 (2013). CrossRefGoogle Scholar
  20. 20.
    Zheng, J., Zhao, Q., Ye, Z.: Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl. Surf. Sci. 299, 86–91 (2014). CrossRefGoogle Scholar
  21. 21.
    Wu, X.-L., Wen, T., Guo, H.-L., Yang, S., Wang, X., Xu, A.-W.: Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589–3597 (2013). CrossRefGoogle Scholar
  22. 22.
    Demarconnay, L., Raymundo-Piñero, E., Béguin, F.: A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. Commun. 12, 1275–1278 (2010). CrossRefGoogle Scholar
  23. 23.
    Qu, Q.T., Wang, B., Yang, L.C., Shi, Y., Tian, S., Wu, Y.P.: Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem. Commun. 10, 1652–1655 (2008). CrossRefGoogle Scholar
  24. 24.
    Zhang, X., Wang, X., Jiang, L., Wu, H., Wu, C., Su, J.: Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J. Power Sources 216, 290–296 (2012). CrossRefGoogle Scholar
  25. 25.
    Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M., Bauer, J.: Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51, 40–47 (2006). CrossRefGoogle Scholar
  26. 26.
    Tansel, B.: Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012). CrossRefGoogle Scholar
  27. 27.
    Xu, C., Wei, C., Li, B., Kang, F., Guan, Z.: Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. J. Power Sources 196, 7854–7859 (2011). CrossRefGoogle Scholar
  28. 28.
    Lufrano, F., Staiti, P., Calvo, E.G., Juárez-Pérez, E.J., Menéndez, J.A., Arenillas, A.: Carbon xerogel and manganese oxide capacitive materials for advanced supercapacitors. Int. J. Electrochem. Sci. 6, 596–612 (2011)Google Scholar
  29. 29.
    Malak-Polaczyk, A., Matei-Ghimbeu, C., Vix-Guterl, C., Frackowiak, E.: Carbon/λ-MnO2 composites for supercapacitor electrodes. J. Solid State Chem. 183, 969–974 (2010). CrossRefGoogle Scholar
  30. 30.
    Chen, X., Wu, K., Gao, B., Xiao, Q., Kong, J., Xiong, Q., Peng, X., Zhang, X., Fu, J.: Three-dimensional activated carbon recycled from rotten potatoes for high-performance supercapacitors. Waste Biomass Valoriz. 7, 551–557 (2015). CrossRefGoogle Scholar
  31. 31.
    Wu, M., Li, R., He, X., Zhang, H., Sui, W., Tan, M.: Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors. New Carbon Mater. 30, 86–91 (2015). CrossRefGoogle Scholar
  32. 32.
    Ma, F., Wan, J., Wu, G., Zhao, H.: Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Adv. 5, 44416–44422 (2015). CrossRefGoogle Scholar
  33. 33.
    Ou, Y., Peng, C., Lang, J., Zhu, D., Yan, X.: Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor. New Carbon Mater. 29, 209–215 (2014). CrossRefGoogle Scholar
  34. 34.
    Liu, B., Zhou, X., Chen, H., Liu, Y., Li, H.: Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim. Acta 208, 55–63 (2016). CrossRefGoogle Scholar
  35. 35.
    Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z., Lu, G.Q.: Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources. 195, 912–918 (2010). CrossRefGoogle Scholar
  36. 36.
    Chang, J., Gao, Z., Wang, X., Wu, D., Xu, F., Wang, X., Jiang, K.: Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta. (2015). Google Scholar
  37. 37.
    Subramanian, V., Luo, C., Stephan, A.M., Nahm, K.S., Thomas, S., Wei, B.: Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111, 7527–7531 (2007). CrossRefGoogle Scholar
  38. 38.
    Yu, M., Wang, W., Li, C., Zhai, T., Lu, X., Tong, Y.: Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6, e129 (2014). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science and TechnologyUniversiti Malaysia PahangKuantanMalaysia

Personalised recommendations