Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 6, pp 1731–1740 | Cite as

Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application

  • Izan Izwan MisnonEmail author
  • Nurul Khairiyyah Mohd Zain
  • Rajan JoseEmail author
Original Paper

Abstract

Electrochemical charge storage of physically and chemically activated carbon synthesized from oil palm kernel shell (PKS) in three different aqueous electrolytes (1 M H2SO4, 1 M Na2SO4 and 6 M KOH) are presented. Coin type CR2032 cells fabricated using the PKS ACs electrodes separated by fiber glass separator and electrolyte are used as devices for measurements. Achievable operating potential for these devices varied as H2SO4 (1.0 V) < KOH (1.2 V) < Na2SO4 (2.0 V). The highest energy density was obtained in Na2SO4 electrolyte (7.4 Wh kg−1) at a power density of 300 W kg−1. The device stability cycle at low current density (0.5 A g−1) for 3500 times showed capacitance retention in range of 78–114% in all devices.

Keywords

Renewable materials Biomass Electrochemical capacitors Aqueous electrolyte Energy storage Symmetric supercapacitors 

Notes

Acknowledgements

This work was supported by UMP Research Grant (RDU150354) and UMP Pre-Commercialization Fund (UIC 160305).

Supplementary material

12649_2018_196_MOESM1_ESM.doc (12.7 mb)
Supplementary material 1 (DOC 12970 KB)

References

  1. 1.
    Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).  https://doi.org/10.1126/science.1249625 CrossRefGoogle Scholar
  2. 2.
    Arvind, D., Hegde, G.: Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications: a review. RSC Adv. 5, 88339–88352 (2015).  https://doi.org/10.1039/C5RA19392C CrossRefGoogle Scholar
  3. 3.
    Jose, R., Krishnan, S.G., Vidyadharan, B., Misnon, I.I., Harilal, M., Aziz, R.A., Ismail, J., Yusoff, M.M.: Supercapacitor electrodes delivering high energy and power densities. Mater. Today Proc. 3, S48–S56 (2016).  https://doi.org/10.1016/j.matpr.2016.01.007 CrossRefGoogle Scholar
  4. 4.
    Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., Yi, B.: High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56, 146–154 (2013).  https://doi.org/10.1016/j.carbon.2012.12.085 CrossRefGoogle Scholar
  5. 5.
    Wang, R., Wang, P., Yan, X., Lang, J., Peng, C., Xue, Q.: Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. Interfaces 4, 5800–5806 (2012).  https://doi.org/10.1021/am302077c CrossRefGoogle Scholar
  6. 6.
    Teo, E.Y.L., Muniandy, L., Ng, E.-P., Adam, F., Mohamed, A.R., Jose, R., Chong, K.F.: High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 192, 110–119 (2016).  https://doi.org/10.1016/j.electacta.2016.01.140 CrossRefGoogle Scholar
  7. 7.
    Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., Moreno-Castilla, C.: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 111, 185–190 (2012).  https://doi.org/10.1016/j.biortech.2012.02.010 CrossRefGoogle Scholar
  8. 8.
    Arie, A.A., Kristianto, H., Halim, M., Lee, J.K.: Synthesis and modification of activated carbon originated from Indonesian local orange peel for lithium ion capacitor’s cathode. J. Solid State Electrochem. (2016).  https://doi.org/10.1007/s10008-016-3445-7 Google Scholar
  9. 9.
    Misnon, I.I., Zain, N.K.M., Aziz, R.A., Vidyadharan, B., Jose, R.: Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 174, 78–86 (2015).  https://doi.org/10.1016/j.electacta.2015.05.163 CrossRefGoogle Scholar
  10. 10.
    Lee, S.G., Park, K.H., Shim, W.G., balathanigaimani, M.S., Moon, H.: Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. J. Ind. Eng. Chem. 17, 450–454 (2011).  https://doi.org/10.1016/j.jiec.2010.10.025 CrossRefGoogle Scholar
  11. 11.
    Choi, J., Kim, N.R., Jin, H.-J., Yun, Y.S.: Nanoporous pyropolymer nanosheets fabricated from renewable bio-resources for supercapacitors. J. Ind. Eng. Chem. 43, 158–163 (2016).  https://doi.org/10.1016/j.jiec.2016.08.002 CrossRefGoogle Scholar
  12. 12.
    Adinaveen, T., Kennedy, L.J., Vijaya, J.J., Sekaran, G.: Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse. J. Ind. Eng. Chem. 19, 1470–1476 (2013).  https://doi.org/10.1016/j.jiec.2013.01.010 CrossRefGoogle Scholar
  13. 13.
    Shrestha, L.K., Adhikari, L., Shrestha, R.G., Adhikari, M.P., Adhikari, R., Hill, J.P., Pradhananga, R.R., Ariga, K.: Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C1/C2 alcohol discrimination. Sci. Technol. Adv. Mater. 17, 483–492 (2016).  https://doi.org/10.1080/14686996.2016.1219971 CrossRefGoogle Scholar
  14. 14.
    Adhikari, M.P., Adhikari, R., Shrestha, R.G., Rajendran, R., Adhikari, L., Bairi, P., Pradhananga, R.R., Shrestha, L.K., Ariga, K.: Nanoporous activated carbons derived from agro-waste corncob for enhanced electrochemical and sensing performance. Bull. Chem. Soc. Jpn. 88, 1108–1115 (2015).  https://doi.org/10.1246/bcsj.20150092 CrossRefGoogle Scholar
  15. 15.
    Zhang, J., Gong, L., Sun, K., Jiang, J., Zhang, X.: Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J. Solid State Electrochem. 16, 2179–2186 (2012).  https://doi.org/10.1007/s10008-012-1639-1 CrossRefGoogle Scholar
  16. 16.
    Lim, W.C., Srinivasakannan, C., Balasubramanian, N.: Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J. Anal. Appl. Pyrolysis 88, 181–186 (2010).  https://doi.org/10.1016/j.jaap.2010.04.004 CrossRefGoogle Scholar
  17. 17.
    Agensi Inovasi Malaysia: National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Biomass Industry. Agensi Inovasi Malaysia, Selangor (2013)Google Scholar
  18. 18.
    Huang, C.-C., Chen, Y.-Z.: Electrochemical performance of supercapacitors with KOH activated mesophase carbon microbead electrodes. J. Taiwan Inst. Chem. Eng. 44, 611–616 (2013).  https://doi.org/10.1016/j.jtice.2012.12.017 CrossRefGoogle Scholar
  19. 19.
    Biswal, M., Banerjee, A., Deo, M., Ogale, S.: From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249 (2013).  https://doi.org/10.1039/c3ee22325f CrossRefGoogle Scholar
  20. 20.
    Zheng, J., Zhao, Q., Ye, Z.: Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl. Surf. Sci. 299, 86–91 (2014).  https://doi.org/10.1016/j.apsusc.2014.01.190 CrossRefGoogle Scholar
  21. 21.
    Wu, X.-L., Wen, T., Guo, H.-L., Yang, S., Wang, X., Xu, A.-W.: Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589–3597 (2013).  https://doi.org/10.1021/nn400566d CrossRefGoogle Scholar
  22. 22.
    Demarconnay, L., Raymundo-Piñero, E., Béguin, F.: A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. Commun. 12, 1275–1278 (2010).  https://doi.org/10.1016/j.elecom.2010.06.036 CrossRefGoogle Scholar
  23. 23.
    Qu, Q.T., Wang, B., Yang, L.C., Shi, Y., Tian, S., Wu, Y.P.: Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem. Commun. 10, 1652–1655 (2008).  https://doi.org/10.1016/j.elecom.2008.08.020 CrossRefGoogle Scholar
  24. 24.
    Zhang, X., Wang, X., Jiang, L., Wu, H., Wu, C., Su, J.: Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J. Power Sources 216, 290–296 (2012).  https://doi.org/10.1016/j.jpowsour.2012.05.090 CrossRefGoogle Scholar
  25. 25.
    Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M., Bauer, J.: Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51, 40–47 (2006).  https://doi.org/10.1016/j.seppur.2005.12.020 CrossRefGoogle Scholar
  26. 26.
    Tansel, B.: Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).  https://doi.org/10.1016/j.seppur.2011.10.033 CrossRefGoogle Scholar
  27. 27.
    Xu, C., Wei, C., Li, B., Kang, F., Guan, Z.: Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. J. Power Sources 196, 7854–7859 (2011).  https://doi.org/10.1016/j.jpowsour.2011.04.052 CrossRefGoogle Scholar
  28. 28.
    Lufrano, F., Staiti, P., Calvo, E.G., Juárez-Pérez, E.J., Menéndez, J.A., Arenillas, A.: Carbon xerogel and manganese oxide capacitive materials for advanced supercapacitors. Int. J. Electrochem. Sci. 6, 596–612 (2011)Google Scholar
  29. 29.
    Malak-Polaczyk, A., Matei-Ghimbeu, C., Vix-Guterl, C., Frackowiak, E.: Carbon/λ-MnO2 composites for supercapacitor electrodes. J. Solid State Chem. 183, 969–974 (2010).  https://doi.org/10.1016/j.jssc.2010.02.015 CrossRefGoogle Scholar
  30. 30.
    Chen, X., Wu, K., Gao, B., Xiao, Q., Kong, J., Xiong, Q., Peng, X., Zhang, X., Fu, J.: Three-dimensional activated carbon recycled from rotten potatoes for high-performance supercapacitors. Waste Biomass Valoriz. 7, 551–557 (2015).  https://doi.org/10.1007/s12649-015-9458-0 CrossRefGoogle Scholar
  31. 31.
    Wu, M., Li, R., He, X., Zhang, H., Sui, W., Tan, M.: Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors. New Carbon Mater. 30, 86–91 (2015).  https://doi.org/10.1016/S1872-5805(15)60178-0 CrossRefGoogle Scholar
  32. 32.
    Ma, F., Wan, J., Wu, G., Zhao, H.: Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Adv. 5, 44416–44422 (2015).  https://doi.org/10.1039/C5RA05090A CrossRefGoogle Scholar
  33. 33.
    Ou, Y., Peng, C., Lang, J., Zhu, D., Yan, X.: Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor. New Carbon Mater. 29, 209–215 (2014).  https://doi.org/10.1016/S1872-5805(14)60135-9 CrossRefGoogle Scholar
  34. 34.
    Liu, B., Zhou, X., Chen, H., Liu, Y., Li, H.: Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim. Acta 208, 55–63 (2016).  https://doi.org/10.1016/j.electacta.2016.05.020 CrossRefGoogle Scholar
  35. 35.
    Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z., Lu, G.Q.: Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources. 195, 912–918 (2010).  https://doi.org/10.1016/j.jpowsour.2009.08.048 CrossRefGoogle Scholar
  36. 36.
    Chang, J., Gao, Z., Wang, X., Wu, D., Xu, F., Wang, X., Jiang, K.: Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta. (2015).  https://doi.org/10.1016/j.electacta.2014.12.169 Google Scholar
  37. 37.
    Subramanian, V., Luo, C., Stephan, A.M., Nahm, K.S., Thomas, S., Wei, B.: Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111, 7527–7531 (2007).  https://doi.org/10.1021/jp067009t CrossRefGoogle Scholar
  38. 38.
    Yu, M., Wang, W., Li, C., Zhai, T., Lu, X., Tong, Y.: Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6, e129 (2014).  https://doi.org/10.1038/am.2014.78 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science and TechnologyUniversiti Malaysia PahangKuantanMalaysia

Personalised recommendations