Advertisement

Effects of Tryptophan Along with Sodium Pyruvate and Sodium Thiosulfate on Chlorella vulgaris Growth

  • Puja Tandon
  • Qiang JinEmail author
  • Limin Huang
  • Rui Song
  • Aidang Shan
Original Paper
  • 39 Downloads

Abstract

Microalgae could serve as an ideal bioenergy resource for third-generation biofuels because of its endless features. However, in an effort to render it as a commercially viable bioenergy resource, certain improvements that enhance its productivity are required. In the present study, the role of three independent substrates, tryptophan, sodium thiosulfate, and sodium pyruvate, and their incorporation in modified BG-11 towards maximizing the Chlorella vulgaris FACHB-8 productivity was studied. These substrates could strongly impart a stimulating effect on microalgal productivity, firstly, either by promoting faster growth and chlorophyll content (tryptophan), or secondly by quenching the reactive oxygen species out of the culture medium (pyruvate), or thirdly by reducing the culture medium (thiosulfate). Response surface mediated optimal design model was effective in calculating the optimal concentration of these three independent substrates in modified BG-11. The observed actual values (1.54 g L−1—biomass and 1.91 µg L−1—chlorophyll) of the model were in close agreement with the predicted values (1.4 g L−1—biomass and 1.82 µg L−1—chlorophyll), thus, indicating the validity to the model. Tryptophan (2.2 times-chlorophyll and 2.5 times-biomass) was most effective in stimulating microalgal growth as compared with other substrates in modified BG-11. This study supported the concept that tryptophan after following one of the three pathways acted as the precursor for the production of indole acetic acid that in turn acted as a phytostimulator for microalgal growth. The outcomes of the present study would offer a step towards resolving the gaps present in producing viable, sustainable, high chlorophyll producing microalgal biomass.

Graphical Abstract

Effects of tryptophan along with sodium pyruvate and sodium thiosulfate on Chlorella vulgaris FACHB-8 growth

Keywords

Microalgae Chlorella vulgaris Tryptophan Indole-3-acetic acid Response surface methodology 

Notes

Acknowledgements

This work was supported, by the National Natural Science Foundation of China (21476139) and Participation in Research program (PRP) (T160PRP30006) from Shanghai Jiao Tong University.

Author Contributions

QJ and AS overall coordinated, debated and finalized the manuscript. PT wrote the manuscript after preparation of design, acquisition of data, interpretation of data and other information. All authors read and approved the final draft of the manuscript. LH participated in manuscript design and finalization of the manuscript. All authors read and approved the final draft of the manuscript.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12649_2018_577_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 KB)

References

  1. 1.
    Janssen, E., Poblome, J., Claeys, J., Kint, V., Degryse, P., Marinova, E., Muys, B.: Fuel for debating ancient economies. Calculating wood consumption at urban scale in Roman Imperial times. J. Archaeol. Sci. Rep. 11, 592–599 (2017).  https://doi.org/10.1016/j.jasrep.2016.12.029 Google Scholar
  2. 2.
    Ventura, S.P.M., Nobre, B.P., Ertekin, F., Hayes, M., Garciá-Vaquero, M., Vieira, F., Koc, M., Gouveia, L., Aires-Barros, M.R., Palavra, A.M.F.: 19—Extraction of value-added compounds from microalgae A2—Gonzalez-Fernandez, Cristina. In: Muñoz, R. (ed.) Microalgae-Based Biofuels and Bioproducts, pp. 461–483. Woodhead Publishing, Cambridge (2017)Google Scholar
  3. 3.
    Tandon, P., Jin, Q.: Microalgae culture enhancement through key microbial approaches. Renew. Sustain. Energy Rev. 80, 1089–1099 (2017).  https://doi.org/10.1016/j.rser.2017.05.260 Google Scholar
  4. 4.
    Srivastava, A., Prasad, R.: Triglycerides-based diesel fuels. Renew. Sustain. Energy Rev. 4(2), 111–133 (2000)Google Scholar
  5. 5.
    Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R.D., Drogui, P., Surampalli, R.Y.: The potential of microalgae in biodiesel production. Renew. Sustain. Energy Rev. 90, 336–346 (2018)Google Scholar
  6. 6.
    Brennan, L., Owende, P.: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14(2), 557–577 (2010).  https://doi.org/10.1016/j.rser.2009.10.009 Google Scholar
  7. 7.
    Yu, X., Chen, L., Zhang, W.: Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front. Microbiol. (2015).  https://doi.org/10.3389/fmicb.2015.00056 Google Scholar
  8. 8.
    Jang, Y.-S., Park, J.M., Choi, S., Choi, Y.J., Seung, D.Y., Cho, J.H., Lee, S.Y.: Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol. Adv. 30(5), 989–1000 (2012).  https://doi.org/10.1016/j.biotechadv.2011.08.015 Google Scholar
  9. 9.
    Krienitz, L., Huss, V.A.R., Bock, C.: Chlorella: 125 years of the green survivalist. Trends Plant Sci. 20(2), 67–69 (2015).  https://doi.org/10.1016/j.tplants.2014.11.005 Google Scholar
  10. 10.
    Ngangkham, M., Ratha, S.K., Prasanna, R., Saxena, A.K., Dhar, D.W., Sarika, C., Prasad, R.B.N.: Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. SpringerPlus. 1(1), 33 (2012).  https://doi.org/10.1186/2193-1801-1-33 Google Scholar
  11. 11.
    Paliwal, C., Pancha, I., Ghosh, T., Maurya, R., Chokshi, K., Vamsi Bharadwaj, S.V., Ram, S., Mishra, S.: Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501. Biores. Technol. 197(Suppl. C), 363–368 (2015).  https://doi.org/10.1016/j.biortech.2015.08.122 Google Scholar
  12. 12.
    Chokshi, K., Pancha, I., Maurya, R., Paliwal, C., Ghosh, T., Ghosh, A., Mishra, S.: Growth medium standardization and thermotolerance study of the freshwater microalga Acutodesmus dimorphus—a potential strain for biofuel production. J. Appl. Phycol. 28(5), 2687–2696 (2016).  https://doi.org/10.1007/s10811-016-0826-3 Google Scholar
  13. 13.
    George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., Mishra, S.: Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—a potential strain for bio-fuel production. Biores. Technol. 171(Supplement C), 367–374 (2014).  https://doi.org/10.1016/j.biortech.2014.08.086 Google Scholar
  14. 14.
    Shin, Y.S., Choi, H.I., Choi, J.W., Lee, J.S., Sung, Y.J., Sim, S.J.: Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresour. Technol. 258, 335–344 (2018)Google Scholar
  15. 15.
    Mandalam, R.K., Palsson, B.O.: Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol. Bioeng. 59(5), 605–611 (1998).  https://doi.org/10.1002/(sici)1097-0290(19980905)59:5%3C605::aid-bit11%3E3.0.co;2-8 Google Scholar
  16. 16.
    Hanifzadeh, M., Garcia, E.C., Viamajala, S.: Production of lipid and carbohydrate from microalgae without compromising biomass productivities: role of Ca and Mg. Renew. Energy 127, 989–997 (2018)Google Scholar
  17. 17.
    Liu, T., Liu, F., Wang, C., Wang, Z., Li, Y.: The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs. Bioresour. Technol. 232, 44–52 (2017).  https://doi.org/10.1016/j.biortech.2017.02.004 Google Scholar
  18. 18.
    Palacios, O.A., Gomez-Anduro, G., Bashan, Y., De-Bashan, L.E.: Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. Fems Microbiol. Ecol. (2016).  https://doi.org/10.1093/femsec/fiw077 Google Scholar
  19. 19.
    Yu, X., Niu, X., Zhang, X., Pei, G., Liu, J., Chen, L., Zhang, W.: Identification and mechanism analysis of chemical modulators enhancing astaxanthin accumulation in Haematococcus pluvialis. Algal Res. 11(Suppl C), 284–293 (2015).  https://doi.org/10.1016/j.algal.2015.07.006 Google Scholar
  20. 20.
    Idris, E.E., Iglesias, D.J., Talon, M., Borriss, R.: Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20(6), 619–626 (2007)Google Scholar
  21. 21.
    Dao, G.-H., Wu, G.-X., Wang, X.-X., Zhang, T.-Y., Zhan, X.-M., Hu, H.-Y.: Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Res. 33, 345–351 (2018)Google Scholar
  22. 22.
    Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N., Lugtenberg, B.: Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19(3), 250–256 (2006)Google Scholar
  23. 23.
    Lombardi, N., Vitale, S., Turrà, D., Reverberi, M., Fanelli, C., Vinale, F., Marra, R., Ruocco, M., Pascale, A., d’Errico, G.: Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol. Plant Microbe Interact. 31(10), 982–994 (2018)Google Scholar
  24. 24.
    Prasanna, R., Joshi, M., Rana, A., Nain, L.: Modulation of IAA production in cyanobacteria by tryptophan and light. Polish J. Microbiol. 59(2), 99–105 (2010)Google Scholar
  25. 25.
    Spaepen, S., Vanderleyden, J., Remans, R.: Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31(4), 425–448 (2007).  https://doi.org/10.1111/j.1574-6976.2007.00072.x Google Scholar
  26. 26.
    Yu, Z., Song, M., Pei, H., Jiang, L., Hou, Q., Nie, C., Zhang, L.: The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour. Technol. 239, 87–96 (2017).  https://doi.org/10.1016/j.biortech.2017.04.120 Google Scholar
  27. 27.
    Giridhar Babu, A., Wu, X., Kabra, A.N., Kim, D.-P.: Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation. Algal Res. 23, 178–185 (2017).  https://doi.org/10.1016/j.algal.2017.02.004 Google Scholar
  28. 28.
    Feng, F.-Y., Yang, W., Jiang, G.-Z., Xu, Y.-N., Kuang, T.-Y.: Enhancement of fatty acid production of Chlorella sp.(Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. Process Biochem. 40(3), 1315–1318 (2005)Google Scholar
  29. 29.
    Tandon, P., Chhibber, S., Reed, R.H.: Inactivation of Escherichia coli and coliform bacteria in traditional brass and earthernware water storage vessels. Antonie Leeuwenhoek Int. J. General Mol. Microbiol. 88(1), 35–48 (2005).  https://doi.org/10.1007/s10482-004-7366-6 Google Scholar
  30. 30.
    Kelts, J.L., Cali, J.J., Duellman, S.J., Shultz, J.: Altered cytotoxicity of ROS-inducing compounds by sodium pyruvate in cell culture medium depends on the location of ROS generation. Springerplus 4 (2015).  https://doi.org/10.1186/s40064-015-1063-y
  31. 31.
    Kirrolia, A., Bishnoi, N.R., Singh, R.: Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella spp. for biodiesel production. Ann. Microbiol. 64(3), 1133–1147 (2014).  https://doi.org/10.1007/s13213-013-0752-4 Google Scholar
  32. 32.
    Kose Engin, I., Cekmecelioglu, D., Yücel, A.M., Oktem, H.A.: Enhancement of heterotrophic biomass production by micractinium sp. ME05. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-9846-8 Google Scholar
  33. 33.
    Yang, F.F., Long, L.J., Sun, X.M., Wu, H.L., Li, T., Xiang, W.Z.: Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Marine Drugs. 12(3), 1245–1257 (2014).  https://doi.org/10.3390/md12031245 Google Scholar
  34. 34.
    Salati, S., D’Imporzano, G., Menin, B., Veronesi, D., Scaglia, B., Abbruscato, P., Mariani, P., Adani, F.: Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Biores. Technol. 230, 82–89 (2017).  https://doi.org/10.1016/j.biortech.2017.01.030 Google Scholar
  35. 35.
    Lichtenthaler, H.K.: [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).  https://doi.org/10.1016/0076-6879(87)48036-1 Google Scholar
  36. 36.
    Richa, K., Bose, H., Singh, K., Karthik, L., Kumar, G., Rao, B.K.V.: Response surface optimization for the production of marine eubacterial protease and its application. Res. J. Biotechnol. 8(4), 78–85 (2013)Google Scholar
  37. 37.
    Mukherjee, S., Bandyopadhayay, B., Basak, B., Mandal, N., Dey, A., Mondal, B.: An improved method of optimizing the extraction of polyphenol oxidase from potato (Solanum tuberosum L.) peel. Notulae Sci. Biol. 4(1), 98–107 (2012)Google Scholar
  38. 38.
    Imamoglu, E., Demirel, Z., Dalay, M.C.: A response surface methodology study for the protein production of chlorella spGoogle Scholar
  39. 39.
    Boopathi, T., Balamurugan, V., Gopinath, S., Sundararaman, M.: Characterization of IAA production by the mangrove cyanobacterium Phormidium sp. MI405019 and its influence on tobacco seed germination and organogenesis. J. Plant Growth Regul. 32(4), 758–766 (2013).  https://doi.org/10.1007/s00344-013-9342-8 Google Scholar
  40. 40.
    Labeeuw, L., Khey, J., Bramucci, A.R., Atwal, H., de la Mata, A.P., Harynuk, J., Case, R.J.: Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells. Front. Microbiol. (2016).  https://doi.org/10.3389/fmicb.2016.00828 Google Scholar
  41. 41.
    Maruyama, A., Maeda, M., Simidu, U.: Microbial production of auxin indole-3-acetic acid in marine sediments. Mar. Ecol. Prog. Ser. 58(1/2), 69–75 (1989)Google Scholar
  42. 42.
    Fiore, C.L., Longnecker, K., Kido Soule, M.C., Kujawinski, E.B.: Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongatus CCMP 1631. Environ. Microbiol. 17(10), 3949–3963 (2015).  https://doi.org/10.1111/1462-2920.12899 Google Scholar
  43. 43.
    Palacios, O.A., Choix, F.J., Bashan, Y., de-Bashan, L.E.: Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokinianaAzospirillum brasilense system under heterotrophic conditions. Res. Microbiol. 167(5), 367–379 (2016)Google Scholar
  44. 44.
    Zakharova, E.A., Shcherbakov, A.A., Brudnik, V.V., Skripko, N.G., Bulkhin, N.S., Ignatov, V.V.: Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. FEBS J. 259(3), 572–576 (1999)Google Scholar
  45. 45.
    Carreno-Lopez, R., Campos-Reales, N., Elmerich, C., Baca, B.: Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol. Gen. Genet. 264(4), 521–530 (2000)Google Scholar
  46. 46.
    Liu, Y.-Y., Chen, H.-W., Chou, J.-Y.: Variation in indole-3-acetic acid production by wild Saccharomyces cerevisiae and S. paradoxus strains from diverse ecological sources and its effect on growth. PloS ONE 11(8), e0160524 (2016)Google Scholar
  47. 47.
    Tandon, P., Chhibber, S., Reed, R.H.: Survival & detection of the faecal indicator bacterium Enterococcus faecalis in water stored in traditional vessels. Indian J. Med. Res. 125(4), 557–566 (2007)Google Scholar
  48. 48.
    Mandal, S., Mallick, N.: Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84(2), 281–291 (2009).  https://doi.org/10.1007/s00253-009-1935-6 Google Scholar
  49. 49.
    Li, J., Niu, X., Pei, G., Sui, X., Zhang, X., Chen, L., Zhang, W.: Identification and metabolomic analysis of chemical modulators for lipid accumulation in Crypthecodinium cohnii. Biores. Technol. 191(Suppl C), 362–368 (2015).  https://doi.org/10.1016/j.biortech.2015.03.068 Google Scholar
  50. 50.
    Sui, X., Niu, X., Shi, M., Pei, G., Li, J., Chen, L., Wang, J., Zhang, W.: Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii. J. Agric. Food Chem. 62(51), 12477–12484 (2014).  https://doi.org/10.1021/jf503671m Google Scholar
  51. 51.
    Franz, A.K., Danielewicz, M.A., Wong, D.M., Anderson, L.A., Boothe, J.R.: Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem. Biol. 8(5), 1053–1062 (2013).  https://doi.org/10.1021/cb300573r Google Scholar
  52. 52.
    Wang, H., Hill, R.T., Zheng, T., Hu, X., Wang, B.: Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit. Rev. Biotechnol. 36(2), 341–352 (2016).  https://doi.org/10.3109/07388551.2014.961402 Google Scholar
  53. 53.
    Sergeeva, E., Liaimer, A., Bergman, B.: Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta. 215(2), 229–238 (2002).  https://doi.org/10.1007/s00425-002-0749-x Google Scholar
  54. 54.
    Gutierrez, C.K., Matsui, G.Y., Lincoln, D.E., Lovell, C.R.: Production of the phytohormone indole-3-acetic acid by estuarine species of the genus vibrio. Appl. Environ. Microbiol. 75(8), 2253–2258 (2009).  https://doi.org/10.1128/aem.02072-08 Google Scholar
  55. 55.
    Roeselers, G., Newton, I.L.G., Woyke, T., Auchtung, T.A., Dilly, G.F., Dutton, R.J., Fisher, M.C., Fontanez, K.M., Lau, E., Stewart, F.J., Richardson, P.M., Barry, K.W., Saunders, E., Detter, J.C., Wu, D., Eisen, J.A., Cavanaugh, C.M.: Complete genome sequence of Candidatus Ruthia magnifica. Stand. Genom. Sci. 3(2), 163–173 (2010).  https://doi.org/10.4056/sigs.1103048 Google Scholar
  56. 56.
    Dittami, S.M., Barbeyron, T., Boyen, C., Cambefort, J., Collet, G., Delage, L., Gobet, A., Groisillier, A., Leblanc, C., Michel, G., Scornet, D., Siegel, A., Tapia, J.E., Tonon, T.: Genome and metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Front. Genet. (2014).  https://doi.org/10.3389/fgene.2014.00241 Google Scholar
  57. 57.
    Mirzaie, M.A.M., Kalbasi, M., Mousavi, S.M., Ghobadian, B.: Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Prep. Biochem. Biotechnol. 46(4), 368–375 (2016).  https://doi.org/10.1080/10826068.2015.1031398 Google Scholar
  58. 58.
    Cheng, K.C., Ren, M., Ogden, K.L.: Statistical optimization of culture media for growth and lipid production of Chlorella protothecoides UTEX 250. Bioresour. Technol. 128, 44–48 (2013).  https://doi.org/10.1016/j.biortech.2012.09.085 Google Scholar
  59. 59.
    Vishwakarma, R., Dhar, D.W., Pabbi, S.: Formulation of a minimal nutritional medium for enhanced lipid productivity in Chlorella sp. and Botryococcus sp. using response surface methodology. Water Sci. Technol. 77(6), 1660–1672 (2018)Google Scholar
  60. 60.
    He, P., Mao, B., Shen, C., Shao, L., Lee, D., Chang, J.: Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresour. Technol. 129, 177–181 (2013)Google Scholar
  61. 61.
    Zheng, H., Liu, M., Lu, Q., Wu, X., Ma, Y., Cheng, Y., Addy, M., Liu, Y., Ruan, R.: Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters. Bioresour. Technol. 249, 479–486 (2018)Google Scholar
  62. 62.
    Ramírez-López, C., Chairez, I., Fernández-Linares, L.: A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Biores. Technol. 212, 207–216 (2016).  https://doi.org/10.1016/j.biortech.2016.04.051 Google Scholar
  63. 63.
    Leong, W.-H., Lim, J.-W., Lam, M.-K., Uemura, Y., Ho, Y.-C.: Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renew. Sustain. Energy Rev. 91, 950–961 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Puja Tandon
    • 1
  • Qiang Jin
    • 1
    Email author
  • Limin Huang
    • 1
  • Rui Song
    • 2
  • Aidang Shan
    • 1
  1. 1.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations