Advertisement

Producing Biohythane from Urban Organic Wastes

  • David BolzonellaEmail author
  • Federico Mıcoluccı
  • Federico Battısta
  • Cristina Cavınato
  • Marco Gottardo
  • Stefano Pıovesan
  • Paolo Pavan
Original Paper
  • 22 Downloads

Abstract

This study investigated the advantages of the anaerobic codigestion process of two urban organic waste: the organic fraction of municipal solid wastes and the waste activated sludge produced during biological wastewater treatment. In particular, a comparison between mono and double stage anaerobic digestion for biogas and biohythane (hydrogen and methane) production, respectively, was conducted at thermophilic conditions in a pilot scale rig with a hydraulic retention time of 20 days. Considering yields, the specific gas productions for the single stage process was 490 l biogas per kg TVS fed to the system while in the two stage process hydrogen and methane productions reached average values of 24 LH2 and 570 LCH4 per kg VS fed to the system, respectively. Obtained biohythane, after upgrading, is particularly valuable for the automotive sector contributing to improve the combustion engine performance and to reduce the contaminants emissions in the atmosphere.

Keywords

Waste activated sludge Organic municipal solid waste Thermophilic anaerobic digestion Hydrogen Methane 

Notes

Acknowledgements

The financial supports of Industria 2015 project (Ministry for Economic Development) and the WISE PRIN 2012 are gratefully acknowledged. The hospitality of the Treviso City Council and of Alto Trevigiano Servizi s.c.a.r.l. are kindly acknowledged.

References

  1. 1.
    SAVE FOOD: Global Initiative on Food Loss and Waste Reduction. http://www.fao.org/save-food/resources/keyfindings/en/. Accessed November 2017
  2. 2.
    Karthikeyan, O.P., Trably, E., Mehariya, S., Bernet, N., Wong, J.W.C., Carrere, H.: Pretreatment of food waste for methane and hydrogen recovery: a review: Bioresour. Technol. 249:1025–1039.  https://doi.org/10.1016/j.biortech.2017.09.105
  3. 3.
    Nghiem, L.D., Koch, K., Bolzonella, D., Drewes, J.E.: Full scale co-digestion of wastewater sludge and food waste: bottlenecks and possibilities. Renew. Sustain. Energy Rev. 72, 354–362 (2017)CrossRefGoogle Scholar
  4. 4.
    Papargyropoulou, E., Lozano, R., Steinberger, K., Wright, J., Ujang, N., Bin, Z.: The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 76, 106–115 (2014)CrossRefGoogle Scholar
  5. 5.
    Bolzonella, D., Battista, F., Cavinato, C., Gottardo, M., Micolucci, F., Lyberatos, G., Pavan, P.: Recent developments in biohythane production from household food wastes: a review. Bioresour. Technol. 257, 311–319 (2018)CrossRefGoogle Scholar
  6. 6.
    Davis, R.D.: The impact of EU and UK environmental pressures on the future of sludge treatment and disposal. Water Environ. J. 10, 65–69 (1996)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008)CrossRefGoogle Scholar
  8. 8.
    Xie, S., Wickham, R., Nghiem, L.D.: Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. Int. Biodeterior. Biodegrad. 116, 191–197 (2017)CrossRefGoogle Scholar
  9. 9.
    Mata-Alvarez, J., Dosta, J., Macé, S., Astals, S.: Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit. Rev. Biotechnol. 31, 99–111 (2011)CrossRefGoogle Scholar
  10. 10.
    Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 55, 260–265 (2013)CrossRefGoogle Scholar
  11. 11.
    Koch, K., Plabst, M., Schmidt, A., Helmreichnd, B., Drewes, J.E.: Co-digestion of food waste in a municipal wastewater treatment plant: comparison of batch tests and full-scale experiences. Waste Manag. 47, 28–33 (2015)CrossRefGoogle Scholar
  12. 12.
    Micolucci, F., Gottardo, M., Cavinato, C., Pavan, P., Bolzonella, D.: Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag 48, 227–235 (2016)CrossRefGoogle Scholar
  13. 13.
    Shen, Y., Linville, J.L., Urgun-Demirtas, M., Mintz, M.M., Snyder, S.W.: An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 50, 346–362 (2015)CrossRefGoogle Scholar
  14. 14.
    Porpatham, E., Ramesh, A., Nagalingam, B.: Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int. J. Hydrogen Energy 32, 2057–2065 (2007)CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Si, B., Li, J., He, J., Zhang, C., Lu, Y., Zhang, Y., Xing, X.H.: Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Curr. Opin. Biotechnol. 50, 25–31 (2018)CrossRefGoogle Scholar
  16. 16.
    Mishra, P., Balachandar, G., Das, D.: Improvement in biohythane production using organic solid waste and distillery effluent. Waste Manag. 66, 70–78 (2017)CrossRefGoogle Scholar
  17. 17.
    Luo, G., Xie, L., Zou, Z., Wang, W., Zhou, Q., Shim, H.: Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR). Int. J. Hydrogen Energy 35, 11733–11737 (2010)CrossRefGoogle Scholar
  18. 18.
    Dounavis, S.A., Ntaikou, I., Kamilari, M., Lyberatos, G.: Production of bio-based hydrogen enriched methane from waste glycerol in a two stage continuous system. Waste Biomass Valor 7, 677–689 (2016)CrossRefGoogle Scholar
  19. 19.
    De Simio, L., Gambino, M., Iannaccone, S.: Using natural gas/hydrogen mixture as a fuel in a 6-cylinder stoichiometric spark ignition engine. In: De Falco M., Basile, A. (eds.) Enriched Methane: The First Step Toward the Hydrogen Economy. Springer International Publishing, Cham (2016)Google Scholar
  20. 20.
    Fan, K.S., Kan, N.K., Lay, J.J.: Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour. Technol. 97, 84–89 (2006)CrossRefGoogle Scholar
  21. 21.
    Valdez-Vazquez, I., Poggi-Varaldo, H.M.: Hydrogen production by fermentative consortia. Renew. Sustain. Energy Rev. 13, 1000–1113 (2009)CrossRefGoogle Scholar
  22. 22.
    APHA/AWWA/WEF: Standards Methods for the Examination of Water and Wastewater, 20th edn. United Book Press, Inc., Baltimore (1998)Google Scholar
  23. 23.
    Velushamy, C., Kalamdhad, A.S.: Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: a review. Bioresour. Technol. 245, 1206–1219 (2017)CrossRefGoogle Scholar
  24. 24.
    Bustamante, M.A., Alburquerque, J.A.,. Restrepo, A.P., de la Fuente, C., Paredes, C., Moral, R., Bernal, M.P.: Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy 43, 26–35 (2012)CrossRefGoogle Scholar
  25. 25.
    Uysal, A., Yilmazel, Y.D., Demirer, G.N.: The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard. Mater. 181(1–3), 248–254 (2010)CrossRefGoogle Scholar
  26. 26.
    Micolucci, F., Gottardo, M., Pavan, P., Cavinato, C., Bolzonella, D.: Pilote scale comparison of single and double stage thermophilic anaerobic digestion of food waste. J. Clean. Prod. 171, 1376–1385 (2018)CrossRefGoogle Scholar
  27. 27.
    Battista, F., Fino, D., Mancini, G., Ruggeri, B.: Mixing in digesters used to treat high viscosity substrates: the case of olive oil production wastes. J. Environ. Chem. Eng. 4, 915–923 (2016)CrossRefGoogle Scholar
  28. 28.
    Hesterberg, T.W., Lapin, C.A., Bunn, W.B.: A comparison of emissions from vehicles fuelled with diesel or compressed gas. Environ. Sci. Technol. 42, 6437 (2008)CrossRefGoogle Scholar
  29. 29.
    Lee, D.Y., Ebie, Y., Xu, K.Q., Li, Y.Y., Inamori, Y.: Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour. Technol. 101, 42–47 (2010)CrossRefGoogle Scholar
  30. 30.
    Cavinato, C., Bolzonella, D., Fatone, F., Cecchi, F., Pavan, P.: Optimization of twophase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour. Technol. 102, 8605–8611 (2011)CrossRefGoogle Scholar
  31. 31.
    Micolucci, F., Gottardo, M., Bolzonella, D., Pavan, P.: Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. Int. J. Hydrogen Energy 39, 17563–17572 (2014)CrossRefGoogle Scholar
  32. 32.
    Khongkliang, P., Kongjan, P., Sompong, O.: Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Procedia 79, 827–832 (2015)CrossRefGoogle Scholar
  33. 33.
    Liu, Q., Ren, Z.J., Huang, C., Liu, B., Ren, N., Xing, D.: Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells. Biotechnol. Biofuels 9, 162 (2010)CrossRefGoogle Scholar
  34. 34.
    Qin, Y., Wu, J., Xiao, B., Hojo, T., Li, Y.Y.: Biogas recovery from two-phase anaerobic digestion of food waste and paper waste: optimization of paper waste addition. Sci. Total Environ. 634, 1222–1230 (2018)CrossRefGoogle Scholar
  35. 35.
    Abdullah, Y., Rizwan, H., Bari, A., Fidous, T., Maryam, K.: K: A comparison of engine emissions from heavy, medium and light vehicles for CNG, diesel and gasoline fuels. Pol. J. Environ. Stud. 22, 1277–1281 (2013)Google Scholar
  36. 36.
    Kang, J., Chu, S., Lee, J., Kim, G., Min, K.: Effect of operating parameters on diesel/propane dual fuel premixed compression ignition in a diesel engine. Int. J. Automot. Technol. 19, 27–35 (2018)CrossRefGoogle Scholar
  37. 37.
    Motor Vehicle Emission Controls: Fuel Types. http://www.air-quality.org.uk/26.php. Accessed November 2017
  38. 38.
    Bielaczyc, P., Szczotka, A., Woodburn, J.: A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG. IOP Conf. Series. Mater. Sci. Eng. 148 (2016).  https://doi.org/10.1088/1757-899X/148/1/012060
  39. 39.
    Tamilselvan, P., Nallusamy, N., Rajkumar, S.: A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines. Renew. Sustain. Energy Rev. 79, 1134–1159 (2017)CrossRefGoogle Scholar
  40. 40.
    Patterson, T., Esteves, S., Dinsdale, R., Guwy, A., Maddy, J.: Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel. Bioresour. Technol. 131, 235–245 (2013)CrossRefGoogle Scholar
  41. 41.
    Coats, E.R., Searcy, E., Feris, K., Shrestha, D., McDonald, A.G., Briones, A., Magnuson, T., Prior, M.: An integrated two-stage anaerobic digestion and biofuel production process to reduce life cycle GHG emissions from US dairies. Biofuels Bioprod. Bioref. 7, 459–473 (2013)CrossRefGoogle Scholar
  42. 42.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of VeronaVeronaItaly
  2. 2.Department of Environmental SciencesCa’ Foscari UniversityVeniceItaly

Personalised recommendations