Alkali-Activated Material Based on Red Clay and Silica Gel Waste

  • Ruben Paul BorgEmail author
  • Danute VaičiukynienėEmail author
  • Vincas Gurskis
  • Dalia Nizevičienė
  • Rytis Skominas
  • Dainius Ramukevičius
  • Raimondas Sadzevičius


Industrial by-products such as silica gel waste and red clay based on natural illite, have been used as precursors for the preparation of alkali activated materials (AAM). Raw materials, precursors and the alkali-activated materials were examined using X-ray diffraction, XRFA and SEM analysis. The reactive concentrations of Si and Al were determined using the colorimetric method. The compressive strength of alkali-activated samples was also evaluated. The precursors were made from Lithuanian red clay (Ukmergė deposit) and silica gel waste. The clay and silica gel waste were first mixed together and then calcined at 900 °C or 600 °C to obtain the precursors. The results show that during the calcination process, new phase CaF2 formed in the precursors. It is possible that fluoride compound which forms during the calcination process, acts as a flux (at a temperature of 900 °C), and for this reason, the reactive amorphous phase is transformed into mullite and cristobalite (crystalline phases), which are not reactive. According to the XRD diffractogram, calcination at a temperature of 600 °C was sufficient to convert the crystalline structure of kaolinite into an amorphous phase. In this case, at a calcination temperature of 600 °C, it was recommended to use up to 25% of silica gel waste. The maximal compressive strength (7 MPa) was achieved by using 5% of silicagel waste. It was concluded that red clay–silica gel waste AAM can be considered for the production of green composite materials.


Alkali-activated red clay Silica gel waste Industrial by-product 



  1. 1.
    Esaifan, M., Rahier, H., Barhoum, A., Khoury, H., Hourani, M., Wastiels, J.: Development of inorganic polymer by alkali-activation of untreated kaolinitic clay: Reaction stoichiometry, strength and dimensional stability. Constr. Build. Mater. 91, 251–259 (2015). CrossRefGoogle Scholar
  2. 2.
    Slaty, F., Khoury, H., Wastiels, J., Rahier, H.: Characterization of alkali-activated kaolinitic clay. Appl. Clay Sci. 75, 120–125 (2013). CrossRefGoogle Scholar
  3. 3.
    Gharzouni, A., Samet, B., Baklouti, S., Joussein, E., Rossignol, S.: Addition of low reactive clay into metakaolin-based geopolymer formulation: synthesis, existence domains and properties. Powder Technol. 288, 212–220 (2016). CrossRefGoogle Scholar
  4. 4.
    Bumanis, G., Bajare, D., Korjakins, A. Influence of the carbonate-free clay calcination temperature and curing conditions on the properties of alkali-activated mortar. The International Scientific Conference “Innovative Materials, Structures and Technologies”, 24–28: 2014Google Scholar
  5. 5.
    Hu, N., Bernsmeier, D., Grathoff, G.H., Warr, L.N.: The influence of alkali activator type, curing temperature and gibbsite on the geopolymerization of an interstratified illite- smectite rich clay from Friedland. Appl. Clay Sci. 135, 386–393 (2017). CrossRefGoogle Scholar
  6. 6.
    El Hafid, K., Hajjaji, M.: Effects of the experimental factors on the microstructure and the properties of cured alkali-activated heated clay. Appl. Clay Sci. 116, 202–210 (2015). CrossRefGoogle Scholar
  7. 7.
    Sukmak, P., Horpibulsuk, S., Shen, S.L.: Strength development in clay–fly ash geopolymer. Constr. Build. Mater. 40, 566–574 (2013). CrossRefGoogle Scholar
  8. 8.
    Perná, I., Hanzlíček, T.: The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method. J. Clean. Prod. 112, 1150–1155 (2016). CrossRefGoogle Scholar
  9. 9.
    Sukmak, P., De Silva, P., Horpibulsuk, S., Chindaprasirt, P.: Sulfate resistance of clay-Portland cement and clay high-calcium fly ash geopolymer. J. Mater. Civil Eng. 27(5), 04014158 (2015)CrossRefGoogle Scholar
  10. 10.
    Ogundiran, M.B., Winjobi, F.A.: The potential of binary blended geopolymer binder containing Ijero-Ekiti calcined kaolin clay and ground waste window glass. Afric. J. Pure Appl. Chem. 9(7), 159–166 (2015). CrossRefGoogle Scholar
  11. 11.
    Liew, Y.M., Heah, C.Y., Kamarudin, H.: Structure and properties of clay-based geopolymer cements: a review. Prog. Mater. Sci. 83, 595–629 (2016). CrossRefGoogle Scholar
  12. 12.
    Ruiz-Santaquiteria, C., Fernández-Jiménez, A., Skibsted, J., Palomo, A.: Clay reactivity: production of alkali-activated cements. Appl. Clay Sci. 73, 11–16 (2013). CrossRefGoogle Scholar
  13. 13.
    Takeda, H., Hashimoto, S., Yokoyama, H., Honda, S., Iwamoto, Y.: Characterization of zeolite in zeolite-geopolymer hybrid bulk materials derived from kaolinitic clays. Mater. 6(5), 1767–1778 (2013). CrossRefGoogle Scholar
  14. 14.
    Vaičiukynienė, D., Kantautas, A., Vaitkevičius, V., Sasnauskas, V.: Using of modified AlF3 production waste in cement-based materials. Mater. Sci. 15(3), 255–261 (2008)Google Scholar
  15. 15.
    Monsif, M., Rossignol, S., Allali, F., Zerouale, A., Kandri, N.I., Joussein, E., … Bertani, R.: The implementation of geopolymers materials from moroccan clay, within the framework of the valorization of the local natural resources. J. Mater. Environ. Sci. 8, 2704–2721 (2017).
  16. 16.
    Kriven, W.M., Bell, J.L., Gordon, M.: Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites. Ceram. Trans. 153, 227–250 (2003)Google Scholar
  17. 17.
    Ogundiran, M.B., Kumar, S.: Synthesis of fly ash-calcined clay geopolymers: Reactivity, mechanical strength, structural and microstructural characteristics. Constr. Build. Mater. 125, 450–457 (2016). CrossRefGoogle Scholar
  18. 18.
    Buchwald, A., Hohmann, M., Posern, K., Brendler, E.: The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl. Clay Sci. 46(3), 300–304 (2009). CrossRefGoogle Scholar
  19. 19.
    EN 196-6: Methods of testing cement-Part 6: determination of fineness. (2010)Google Scholar
  20. 20.
    Ferone, C., Liguori, B., Capasso, I., Colangelo, F., Cioffi, R., Cappelletto, E., Di Maggio, R.: Thermally treated clay sediments as geopolymer source material. Appl. Clay Sci. 107, 195–204 (2015)CrossRefGoogle Scholar
  21. 21.
    Seiffarth, T., Hohmann, M., Posern, K., Kaps, C.: Effect of thermal pre-treatment conditions of common clays on the performance of clay-based geopolymeric binders. Appl. Clay Sci. 73, 35–41 (2013). CrossRefGoogle Scholar
  22. 22.
    Garg, N., Skibsted, J.: Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem. Concr. Res. 79, 101–111 (2016). CrossRefGoogle Scholar
  23. 23.
    He, C., Makovicky, E., Øsbæck, B.: Thermal stability and pozzolanic activity of calcined illite. Appl. Clay Sci. 9(5), 337–354 (1995)CrossRefGoogle Scholar
  24. 24.
    McConville, C.J., Lee, W.E.: Microstructural development on firing illite and smectite clays compared with that in kaolinite. J. Amer. Ceram. Soc. 88(8), 2267–2276 (2005). CrossRefGoogle Scholar
  25. 25.
    Kaminskas, R., Cesnauskas, V., Kubiliute, R.: Influence of different artificial additives on Portland cement hydration and hardening. Constr. Build. Mater. 95, 537–544 (2015). CrossRefGoogle Scholar
  26. 26.
    Chandrasekhar, S., Pramada, P.N., Majeed, J.: Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. J. Mater. Sci. 41(23), 7926–7933 (2006). CrossRefGoogle Scholar
  27. 27.
    Ali, M.S., Tahir, M.A.A., Jaafar, S.M., Norkhairunnisa, C.N.A., Matori, M.: K.A.: Preparation and characterization of porous alumina ceramics using different pore agents. J. Ceram. Soc. Jap. 125(5), 402–412 (2017). CrossRefGoogle Scholar
  28. 28.
    Soares, R.D.M., Sabioni, A.C.S., Resck, I.S., Falcomer, V.A.S., Dias, J.A., Silva, N.M.D., … Costa, G.M.D.: Structural characterization of mullites synthesized by thermal decomposition of topaz. Mater. Res. 10(1), 75–78 (2007). CrossRefGoogle Scholar
  29. 29.
    Yan, H., Xue-min, C., Liu, L.P., Liu, X.D., Chen, J.Y.: The hydrothermal transformation of solid geopolymers into zeolites. Micropor. Mesopor. Mater. 161, 187–192 (2012). CrossRefGoogle Scholar
  30. 30.
    Provis, J.L., Lukey, G.C., van Deventer, J.S.: Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005). CrossRefGoogle Scholar
  31. 31.
    Reig, L., Tashima, M.M., Borrachero, M.V., Monzó, J., Cheeseman, C.R., Payá, J.: Properties and microstructure of alkali-activated red clay brick waste. Constr. Build. Mater. 43, 98–106 (2013). CrossRefGoogle Scholar
  32. 32.
    Heah, C.Y., Kamarudin, H., Al Bakri, M., Bnhussain, A.M., Luqman, M., Khairul Nizar, M., Ruzaidi, I., Liew, C.M.: Y.M.: Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build. Mater. 35, 912–992 (2012). CrossRefGoogle Scholar
  33. 33.
    Fletcher, R.A., MacKenzie, K.J.D., Nicholson, C.L., Shimada, S.: The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 25(147), 1–7 (2005). Google Scholar
  34. 34.
    El Hafid, K., Hajjaji, M., Hafid, E.: H.: Influence of NaOH concentration on microstructure and properties of cured alkali-activated calcined clay. J. Build. Eng. 11, 158–165 (2017). CrossRefGoogle Scholar
  35. 35.
    Chavali, R.V.P., Vindula, S.K., Babu, A., Pillai, R.J.: Swelling behavior of kaolinitic clays contaminated with alkali solutions: a micro-level study. Appl. Clay Sci. 135, 575–582 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty for the Built EnvironmentUniversity of MaltaMsidaMalta
  2. 2.Institute of Hydraulic EngineeringAleksandras Stulginskis UniversityAkademijaLithuania
  3. 3.Faculty of Electrical and Electronics EngineeringKaunas University of TechnologyKaunasLithuania

Personalised recommendations