Biodiesel Potentiality of Microalgae Species: evaluation Using Various Nitrogen Sources

  • M. Vadivel
  • Sundaram Arvindnarayan
  • Gopalakrishnan KumarEmail author
  • Sutha Shobana
  • Jeyaprakash Dharmaraja
  • Dinh Duc Nguyen
  • Soon Woong Chang
  • Kandasamy K. Sivagnana PrabhuEmail author
Original Paper



The two fresh water microalgae species namely Scenedesmus dimorphus and Scenedesmus obliquus were selected as biomass feedstocks for biodiesel production due to high accumulation of their neutral lipid content which mainly composed of three significant biodiesel fatty acids profile viz saturated fatty acids (SFA: ≈ 53%), mono unsaturated fatty acids (MUFA: ≈ 24%) and poly unsaturated fatty acids (PUFA: ≈ 20%). Both algae strains were cultivated with five different nitrogen nutrients via (NH4)2SO4 (ammonium sulphate: AS), NH4NO3 (ammonium nitrate: AN), KNO3 (potassium nitrate: PN), (NH2)2CO (urea: UR) and NaNO3 (sodium nitrate: SN) of concentration ranging from 0.02 to 0.3 M in agricultural medium. The transesterification of micro algal lipids with absolute ethanol medium in the presence of Ni/H2 catalyst and Ni(II)–Schiff base chelate promoter was carried out to yield more algal oil. The extracted biodiesel components were analyzed cost–effectively using UV–Vis,1H NMR, 13C NMR and GC–MS spectral characterization to explore their biodiesel potentiality. The results revealed that the extracted microalgae biodiesels are quite suitable for biodiesel production with higher oxidation stability and cetane number.

Graphical Abstract

In this study, S. dimorphus and S. obliquus in the presence of five different nitrogen nutrients of concentration ranging from 0.02 to 0.3 M agar in cultural medium were observed to stimulate them to produce lipid for biodiesel generation. The transesterification of micro algal lipids with absolute ethanol medium in the presence of Ni/H2 catalyst and Ni(II)–Schiff base chelate promoter was carried out to yield more algal oil. The fatty acid composition of the extracted micro algal oils have been identified via UV–Vis, NMR and GC–MS spectral characterization techniques to investigate their biodiesel potentiality. It is noted that increased UR concentration (up to 0.3 M) can effectively enhances biomass production of S. dimorphus and S. obliquus as increased urea levels may enhances biomass production excluding cells may have a low lipid content, at times.


Scenedesmus sp. Ni(II)–Schiff base chelate Nitrogen sources NMR GC–MS techniques 



The authors would like to acknowledge R.M.K. Engineering College, Kavaraipettai for supporting for the Research facilities and STIC, CUSAT, Cochin for giving the analytical facilities.


  1. 1.
    Makareviciene, V., Andruleviciute, V., Skorupskaitė, V., Kasperoviciene, J.: Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potential biofuel feedstock. Environ. Res. Eng. Manag. 3, 21–27 (2011)Google Scholar
  2. 2.
    Velichkova, K., Sirakov, I., Georgiev, G.: Cultivation of Scenedesmus dimorphus strain for biofuel production. Agric. Sci. Technol. 5, 181–185 (2013)Google Scholar
  3. 3.
    Sarpal, A.S., Silva, P.R.M., Pinto, R.F., Cunha, V.S., Daroda, R.J.: Biodiesel potential of oleaginous yeast biomass by NMR spectroscopic techniques. Energy Fuels 28, 3766–3777 (2014)CrossRefGoogle Scholar
  4. 4.
    Myers, J.: Physiology of the algae. Ann. Rev. Microbiol. 3, 157–180 (1951)CrossRefGoogle Scholar
  5. 5.
    Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217–232 (2010)CrossRefGoogle Scholar
  6. 6.
    Li, X., Hu, H.Y., Zhang, Y.P.: Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour. Technol. 102, 3098–3102 (2011)CrossRefGoogle Scholar
  7. 7.
    Fakhry, E.M., Maghraby, D.M.E.L.: Fatty acids composition and biodiesel characterization of Dunaliella salina. J. Water Resour. Prot. 5, 894–899 (2013)CrossRefGoogle Scholar
  8. 8.
    Richmond, A., Hu, Q.: Handbook of Microalgal Culture: applied Phycology and Biotechnology. Wiley & Sons, Oxford (2013)CrossRefGoogle Scholar
  9. 9.
    Zhou, X., Ge, H., Xia, L., Zhang, D., Hu, C.: Evaluation of oil-producing algae as potential biodiesel feedstock. Bioresour. Technol. 134, 24–29 (2013)CrossRefGoogle Scholar
  10. 10.
    Lee, H.W., Roh, S.W., Cho, K., Kim, K.N., Cha, I.T.: Phylogenetic analysis of microalgae based on highly abundant proteins using mass spectrometry. Talanta 132, 630–634 (2015)CrossRefGoogle Scholar
  11. 11.
    Arvindnarayan, S., Prabhu, K.K.S., Shobana, S., Pasupathy, A., Dharmaraja, J., Kumar, G.: Potential assessment of micro algal lipids: a renewable source of energy. J. Energy Inst. 90, 431–440 (2017)CrossRefGoogle Scholar
  12. 12.
    Arvindnarayan, S., SivagnanaPrabhu, K.K., Shobana, S., Dharmaraja, J., Pasupathy, A.: Algal biomass energy carriers as fuels: an alternative green source. J. Energy Inst. 90, 300–315 (2017)CrossRefGoogle Scholar
  13. 13.
    Singh, N., Dhar, D.: Microalgae as second generation biofuel—a review. Agron. Sustain. Dev. 31, 605–629 (2011)CrossRefGoogle Scholar
  14. 14.
    Fakhry, E.M., El Maghraby, E.: Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot. Stud. 56, 1–8 (2015)CrossRefGoogle Scholar
  15. 15.
    El-Shimi, H.I., Attia, N.K., El-Sheltawy, S.T., El-Diwani, G.I.: Biodiesel production from Spirulina–Platensis microalgae by in-situ transesterification process. J. Sustain. Bioenerg. Syst. 3, 224–233 (2013)CrossRefGoogle Scholar
  16. 16.
    Behera, S., Singh, R., Arora, R., Sharma, N.K., Shukla, M.: Scope of algae as third generation biofuels. Front. Bioeng. Biotechnol. 2, 90 (2015)CrossRefGoogle Scholar
  17. 17.
    Cardozo, K.H., Guaratini, T., Barros, M.P., Falcão, V.R., Tonon, A.P.: Metabolites from algae with economical impact. Comp. Biochem. Physiol. C 146, 60–78 (2007)CrossRefGoogle Scholar
  18. 18.
    Jamaluddin, H., Zain, M., Idris, N.A.: A.: Biodiesel production via lipase catalyzed transesterification of microalgae lipids from Tetraselmis sp. Renew. Energy 68, 1–5 (2014)CrossRefGoogle Scholar
  19. 19.
    Sarpal, A.S., Costa, I.C.R., Teixeira, C.M.L.L., Filocomo, D., Candido, R., Silva, P.R.M., Cunha, V.S., Daroda, R.J.: Investigation of biodiesel potential of biomasses of microalgae Chlorella, Spirulina and Tetraselmis by NMR and GC–MS techniques. J. Biotechnol. Biomater. 6, 1–15 (2016)Google Scholar
  20. 20.
    Sarpal, A.S., Teixeira, C.M.L.L., Silva, P.R.M., Monteiro, T.V., Itacolomy, J.: NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential. Appl. Microbiol. Biotechnol. 100, 2471–2485 (2015)CrossRefGoogle Scholar
  21. 21.
    Martins, D.A., Custodio, L., Barreira, L., Pereira, H., Ben-Hamadou, R.: Alternative sources of n–3 long-chain polyunsaturated fatty acids in marine microalgae. Mar. Drugs 11, 2259–2281 (2013)CrossRefGoogle Scholar
  22. 22.
    Winwooda, R.J.: Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL 20, D604 (2013)CrossRefGoogle Scholar
  23. 23.
    Tang, S., Qin, C., Wang, H., Li, S., Tian, S.: Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J. Supercrit. Fluids 57, 44–49 (2011)CrossRefGoogle Scholar
  24. 24.
    Wu, L., Xu, L., Hu, C.: Screening and characterization of oleaginous microalgal species from Northern Xinjiang. J. Microbiol. Biotechnol. 25, 910–917 (2015)CrossRefGoogle Scholar
  25. 25.
    Perrin, D.D., Armarego, W.L.F., Perrin, D.R.: Purification of Laboratory Chemicals. Pergamo Press, Oxford (1980)Google Scholar
  26. 26.
    Boonma, S., Vacharapiyasophon, P., Peerapornpisal, Y., Pekkoh, J., Pumas, C.: Isolation and cultivation of Botryococcus braunii. Kutzing from Northern Thailand. Chiang Mai J. Sci. 41, 298–306 (2014)Google Scholar
  27. 27.
    Varsharani, H., Vijayakumar, K.T., Eswarappa, V.: Effect of nitrogen source on the growth and lipid production of microalgae. Curr. Biotica. 4, 426–433 (2011)Google Scholar
  28. 28.
    El-Kassas, H.Y.: Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. Egypt. J. Aquat. Res. 39, 233–239 (2013)CrossRefGoogle Scholar
  29. 29.
    Mandal, S., Mallick, N.: Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Appl. Environ. Microbiol. 77, 374–377 (2011)CrossRefGoogle Scholar
  30. 30.
    Prabakaran, P., Ravindran, A.D.: Scenedesmus as a potential source of biodiesel among selected microalgae. Curr. Sci. 102, 616–620 (2012)Google Scholar
  31. 31.
    Dhup, S., Dhawan, V.: Effect of nitrogen concentration on lipid productivity and fatty acid composition of Monoraphidium sp. Bioresource Technol. 152, 572–575 (2014)CrossRefGoogle Scholar
  32. 32.
    Hu, Q.: Environmental effects on cell composition. In Richmond, A. (ed.) Handbook of Microalgal Culture: biotechnology and Applied Phycology. Blackwell, Oxford (2004)Google Scholar
  33. 33.
    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A.: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621–639 (2008)CrossRefGoogle Scholar
  34. 34.
    Roopnarain, A., Gray, V.M., Sym, S.: Influence of nitrogen stress on Isochrysis galbana strain U4, a candidate for biodiesel production. Phycol. Res. 62, 237–249 (2014)CrossRefGoogle Scholar
  35. 35.
    Morris, I., Glover, H.E.: Questions on the mechanism of temperature adaptation in marine phytoplankton. Mar. Biol. 24, 147–154 (1974)CrossRefGoogle Scholar
  36. 36.
    Lynn, S.G., Kilham, S.S., Kreeger, D.A., Interlandi, S.J.: Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (bacillariophyceae). J. Phycol. 36, 510–522 (2000)CrossRefGoogle Scholar
  37. 37.
    Jeffryes, C., Rosenberger, J., Rorrer, G.L.: Fed–batch cultivation and bioprocess modeling of Cyclotella sp. for enhanced fatty acid production by controlled silicon limitation. Algal Res. 2, 16–27 (2013)CrossRefGoogle Scholar
  38. 38.
    Ferriols, V.M., Saclauso, C.A., Fortes, N.R., Toledo, N.A., Pahila, I.G.: Effect of elevated carbon dioxide and phosphorous levels on nitrogen uptake, lipid content and growth of Tetraselmis sp. J. Fisheries Aquacul. Sci. 8, 659–672 (2013)CrossRefGoogle Scholar
  39. 39.
    Jeener, R.: Ribonucleic acid and protein synthesis in continuous cultures of Polytomella caeca. Arch. Biochem. Biophys. 43, 381–388 (1953)CrossRefGoogle Scholar
  40. 40.
    Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Li-Beisson, Y., Peltier, G.: Oil accumulation in the model green alga Chlamydomonas reinhardtii. Characterization, variability between common laboratory strains, and relationship with starch reserves. BMC Biotechnol. 11, 7 (2011)CrossRefGoogle Scholar
  41. 41.
    Kuhl, A.: (Stewart, W.D.: PhosphorusIn Algal Physiology and Biochemistry. University Press, California (1974)Google Scholar
  42. 42.
    Xin, L., Hong-ying, H., Ke, G., Ying-Xue, S.: Effects of different nitrogen and phosphorous concentrations on the growth, nutrient uptake and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101, 5496–5500 (2010)Google Scholar
  43. 43.
    Leesing, R., Papone, T., Puangbut, M.: Effect of nitrogen and carbon sources on growthand lipid production from mixotrophic growth of Chlorella sp. KKU-S2. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 8, 366–369 (2014)Google Scholar
  44. 44.
    Nigam, S., Rai, M.P., Sharma, R.: Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am. J. Biochem. Biotechnol. 7, 124–129 (2011)CrossRefGoogle Scholar
  45. 45.
    Griffiths, M.J., Harrison, S.T.L.: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493–507 (2009)CrossRefGoogle Scholar
  46. 46.
    Yeesang, C., Cheirsilp, B.: Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102, 3034–3040 (2011)CrossRefGoogle Scholar
  47. 47.
    Arumugam, M., Agarwal, A., Arya, M.C., Ahmed, Z.: Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour. Technol. 131, 246–249 (2013)CrossRefGoogle Scholar
  48. 48.
    Bisht, T.S., Pandey, M., Pande, V.: Impact of different nitrogen sources on biomass growth and lipid productivity of Scenedesmus sp. for biodiesel production. J. Algal Biomass Util. 7(4), 28–36 (2016)Google Scholar
  49. 49.
    Moheimani, N.R., McHenry, M.P., de Boer, K., Bahri, P. (eds.). Biomass and Biofuels from Microalgae: Advances in Engineering and Biology, Volume 2 of Biofuel and Biorefinery Technologies. Springer–Verlag, Heidelberg (2015)Google Scholar
  50. 50.
    Indhumathi, P., Syed Shabudeen, P.S., Shoba, U.S.: A method for production and characterization of biodiesel from green micro algae. Int. J. Bio-Sci. Bio-Technol. 6, 111–122 (2014)CrossRefGoogle Scholar
  51. 51.
    Goswami, R.C.D.: Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation—a study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. J. Algal Biomass Util. 2, 42–49 (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • M. Vadivel
    • 1
  • Sundaram Arvindnarayan
    • 2
  • Gopalakrishnan Kumar
    • 3
    Email author
  • Sutha Shobana
    • 4
  • Jeyaprakash Dharmaraja
    • 5
  • Dinh Duc Nguyen
    • 6
  • Soon Woong Chang
    • 6
  • Kandasamy K. Sivagnana Prabhu
    • 2
    Email author
  1. 1.Department of ChemistryMohamed Sathak Engineering CollegeRamnadIndia
  2. 2.Department of Mechanical EngineeringR.M.K. Engineering CollegeKavaraipettaiIndia
  3. 3.Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Department of Chemistry and Research CentreAditanar College of Arts and ScienceTiruchendurIndia
  5. 5.Division of Chemistry, Faculty of Science and HumanitiesSree Sowdambika College of EngineeringAruppukottaiIndia
  6. 6.Department of Environmental Energy EngineeringKyonggi UniversitySuwonRepublic of Korea

Personalised recommendations