Advertisement

H4SiW12O40-Catalyzed Levulinic Acid Esterification at Room Temperature for Production of Fuel Bioadditives

  • Castelo Bandane Vilanculo
  • Lorena Christina de Andrade Leles
  • Márcio José da SilvaEmail author
Original Paper
  • 26 Downloads

Abstract

In this work, a route to synthesize bioadditives through H4SiW12O40-catalyzed levulinic acid esterification reactions with alcohols of short chain at room temperature was assessed. Among the Brønsted acids assessed (i.e., sulfuric, p-toluenesulfonic, silicotungstic, phosphomolybdic and phosphotungstic acids), H4SiW12O40 was the most active and selective catalyst. High conversions (ca. 90%) and selectivity (90–97%) for alkyl levulinates with carbon chain size ranging from C6 to C10 were obtained. The effect of main reaction parameters was studied, with a special focus on the reaction temperature, stoichiometry of reactants, concentration and nature of the catalyst. Insights on reaction mechanism were done and the activity of heteropoly catalysts was discussed based on acid strength and softness of the heteropolyanions. The use of renewable raw material, the mild reaction conditions (i.e., room temperature), and a recyclable solid catalyst are the some of the positive features of this process. The alkyl levulinates obtained are renewable origin bioadditives that can be blended either to gasoline or diesel.

Graphical Abstract

Keywords

Fuel bioadditives Heteropolyacids Levulinic acid Biomass 

Notes

Acknowledgements

The authors are grateful for the financial support from CNPq and FAPEMIG (Brazil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Supplementary material

12649_2018_549_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 KB)

References

  1. 1.
    Mukherjee, A., Dumont, M.-J., Raghavan, V.: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72, 143–183 (2015)Google Scholar
  2. 2.
    Rackemann, D.W., Doherty, W.O.S.: The conversion of lignocellulosic to levulinic acid. Biofuel Bioprod. Bioref. 5, 198–214 (2011)Google Scholar
  3. 3.
    Badgujar, K.C., Bhanage, B.M.: The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide. Biomass Bioenergy 84, 12–21 (2016)Google Scholar
  4. 4.
    Kuwahara, Y., Kaburagi, W., Osada, Y., Fujitani, T., Yamashita, H.: Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica. Catal. Today 281, 418–428 (2017)Google Scholar
  5. 5.
    Chen, S.S., Maneerung, T., Tsang, D.C.W., Ok, Y.S., Wang, C.-H.: Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid. methyl ester by heterogeneous catalysts. Chem. Eng. J. 328, 246–273 (2017)Google Scholar
  6. 6.
    Tan, J., Liu, Q., Chen, L., Wang, T., Ma, L., Chen, G.: Efficient production of ethyl levulinate from cassava over Al2(SO4)3 catalyst in ethanol–water system. J. Energy Chem. 26, 115–120 (2017)Google Scholar
  7. 7.
    De, S., Saha, B., Saha, B., Luque, R.: Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour. Technol. 178, 108–118 (2015)Google Scholar
  8. 8.
    Cirujano, F.G., Corma, A., Xamena, F.X.L.: Conversion of levulinic acid into chemicals: synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chem. Eng. Sci. 124, 52–60 (2015)Google Scholar
  9. 9.
    Enumula, S.S., Gurram, V.R.B., Chada, R.R., Burri, D.R., Kamajaru, S.R.R.: Conversion of furfuryl alcohol to alkyl levulinate fuel additives over Al2O3/SBA-15 catalyst. J. Mol. Catal. A 426, 30–38 (2017)Google Scholar
  10. 10.
    Zhang, J., Chen, J.: Modified solid acids derived from biomass based cellulose for one-step conversion of carbohydrates into ethyl levulinate. J. Energy Chem. 25, 747–753 (2016)Google Scholar
  11. 11.
    Nandiwale, K.Y., Sonar, S.K., Niphadkar, P.S., Joshi, P.N., Deshpande, S.S., Patil, V.S., Bokade, V.V.: Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-S as catalyst. Appl. Catal. A 90, 460–461 (2013)Google Scholar
  12. 12.
    Pileidis, F.D., Titirici, M.M.: Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9, 562–582 (2016)Google Scholar
  13. 13.
    Omoruyi, U., Page, S., Hallett, J., Miller, P.W.: Homogeneous Catalyzed reactions of levulinic acid: to γ-valerolactone and beyond. ChemSusChem 9(16), 2037–2047 (2016)Google Scholar
  14. 14.
    Tiong, Y.W., Yap, C.L., Gan, S., Yap, W.S.P.: Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Ind. Eng. Chem. Res. 57, 4749–4766 (2018)Google Scholar
  15. 15.
    Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Vaccaro, L.: Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production, Prog. Energy Comb. Sci. 65, 136–162 (2018)Google Scholar
  16. 16.
    Mika, L.T., Cséfalvay, E., Németh, Á: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118(2), 505–613 (2018)Google Scholar
  17. 17.
    Windom, B.C., Lovestead, T.M., Mascal, M., Nikitin, E.B., Bruno, T.J.: Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels 25, 1878–1889 (2011)Google Scholar
  18. 18.
    Choudhary, V., Pinar, A.B., Lobo, R.F., Vlachos, D.G., Sandler, S.I.: Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 6, 2369–2376 (2013)Google Scholar
  19. 19.
    Liu, Y.J., Lotero, E., Goodwin Jr, J.G.: A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J. Catal. 242, 278–286 (2006)Google Scholar
  20. 20.
    Su, F., Guo, Y.: Advancements in solid acid catalysts for biodiesel production. Green Chem. 16, 2934–2957 (2014)Google Scholar
  21. 21.
    Reddy, B.M., Patil, M.K.: Organic syntheses and transformations. catalyzed by sulfated zirconia. Chem. Rev. 109, 2185–2208 (2009)Google Scholar
  22. 22.
    Alsalme, A.M., Wiper, P.V., Khimyak, Y.Z., Kozhevnikova, E.F., Kozhevikov, I.V.: Solid acid catalysts based on H3PW12O40 heteropoly acid: acid and catalytic properties at a gas-solid interface. J. Catal. 276, 181–189 (2010)Google Scholar
  23. 23.
    Zuo, D., Lane, J., Culy, D., Schultz, M., Pullar, A., Waxman, M.: Biodiesel production from jatropha curcas crude oil using Zno/SiO2 photocatalytic for free fatty acids esterification. Appl. Catal. B 129, 342–350 (2013)Google Scholar
  24. 24.
    Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Domen, K., Hayashi, S.: A carbon material as a strong protonic acid. Angew. Chem. Int. Ed. 43, 2955–2958 (2004)Google Scholar
  25. 25.
    Nakajima, K., Hara, M.: Amorphous carbon with SO3H groups as a solid brønsted acid catalyst. ACS Catal. 2, 1296–1304 (2012)Google Scholar
  26. 26.
    Pileidis, F.D., Tabassum, M., Coutts, S., Titirici, M.M.: Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chin. J. Catal. 35, 929–936 (2014)Google Scholar
  27. 27.
    Fraile, J.M., García-Bordejé, E., Roldán, L.: Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: evidences for sulfonic esters formation. J. Catal. 289, 73–79 (2012)Google Scholar
  28. 28.
    Song, D., An, S., Lu, B., Guo, Y., Leng, J.: Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl. Catal. B 179, 445–457 (2015)Google Scholar
  29. 29.
    Peng, L., Gao, X., Chen, K.: Catalytic upgrading of renewable furfuryl alcohol to alkyl levulinates using AlCl3 as a facile, efficient, and reusable catalyst. Fuel 160, 123–131 (2015)Google Scholar
  30. 30.
    Bregeault, J.-M., Vennat, M., Salles, L., Piquemal, J.-Y., Mahha, Y., Briot, E., Bakala, P.C., Atlamsani, A., Thouvenot, R.: From polyoxometalates to polyoxoperoxometalates and back again; potential applications. J. Mol. Catal. A 250, 177–189 (2006)Google Scholar
  31. 31.
    Haber, J., Pamin, K., Matachowski, L., Mucha, D.: Catalytic performance of the dodecatungstophosphoric acid on different supports. Appl. Catal. A 256, 141–152 (2003)Google Scholar
  32. 32.
    Yadav, G.D.: Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal. Surv. Asia 9(2), 117–137 (2005)MathSciNetGoogle Scholar
  33. 33.
    Sawant, D.P., Vinu, A., Justus, J., Srinivasu, P., Halligudi, S.B.: Catalytic performances of silicotungstic acid/zirconia supported SBA-15 in an esterification of benzyl alcohol with acetic acid. J. Mol. Catal. A 276, 150–157 (2007)Google Scholar
  34. 34.
    Avhad, M.R., Marchetti, J.M.: A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 50, 696–718 (2015)Google Scholar
  35. 35.
    Sambeth, J., Romanelli, G., Autino, J.C., Thomas, J., Baronetti, G.: A theoretical experimental study of Wells-Dawson phospho-tungstic heteropolyacid: an explanation of the pseudo liquid or surface-type behavior. Appl. Catal. A 378, 114–118 (2010)Google Scholar
  36. 36.
    Narkhede, N., Singh, S., Patel, A.: Recent progress on supported polyoxometalates for biodiesel synthesis via esterification and transesterification. Green Chem. 17, 89–107 (2015)Google Scholar
  37. 37.
    Zhou, Y., Chen, G., Long, Z., Wang, J.: Recent advances in polyoxometalate-based heterogeneous catalytic material for liquid-phase organic transformations. RSC Adv. 4, 42092–42113 (2014)Google Scholar
  38. 38.
    Da Silva, M.J., Liberto, N.A.: Soluble and solid-supported Keggin heteropolyacids as catalysts in reactions for biodiesel production: challenges and recent advances. Curr. Org. Chem. 20, 1263–1283 (2015)Google Scholar
  39. 39.
    Yan, K., Wu, G., Wen, J., Chen, A.: One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and. ethyl levulinate biodiesel. Catal. Commun. 34, 58–63 (2013)Google Scholar
  40. 40.
    Pasquale, G., Vázquez, P., Romanelli, G., Baronetti, G.: Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells–Dawson heteropolyacid as catalyst. Catal. Commun. 18, 115–120 (2012)Google Scholar
  41. 41.
    Song, D., An, S., Sun, Y., Guo, Y.: Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes. J. Catal. 333, 184–199 (2016)Google Scholar
  42. 42.
    Pizzio, L.R., Vásquez, P.G., Cáceres, C.V., Blanco, M.N.: Supported Keggin type heteropoly compounds for ecofriendly reactions. Appl. Catal. A 256, 125–139 (2003)Google Scholar
  43. 43.
    Silva, V.W.G., Laier, L.O., Da Silva, M.J.: Novel H3PW12O40: catalyzed esterification reactions of fatty acids at room temperatures for biodiesel production. Catal. Lett. 135, 207–211 (2010)Google Scholar
  44. 44.
    Da Silva, M.J., Julio, A.A., Dorigetto, F.C.S.: Solvent free heteropolyacid-catalyzed glycerol ketalization at room temperature. RSC Adv. 5, 44499–44506 (2015)Google Scholar
  45. 45.
    Timofeeva, M.N.: Acid catalysis by heteropoly acids. Appl. Catal. A 256, 19–35 (2003)Google Scholar
  46. 46.
    Micek-Ilnicka, A.: The role of water in the catalysis on solid heteropolyacids. J. Mol. Catal. A 308(1–2), 1–14 (2009)Google Scholar
  47. 47.
    Raveendra, G., Rajasekhar, A., Srinivas, M., Prasad, P.S., Lingaiah, N.: Selective etherification of hydroxymethylfurfural to biofuel additives over Cs containing silicotungstic acid catalysts. Appl. Catal. A 520, 105–113 (2016)Google Scholar
  48. 48.
    An, S., Song, D., Lu, B., Yang, X., Guo, Y.H.: Morphology tailoring of sulfonic acid functionalized organosilica nanohybrids for the synthesis of biomass-derived alkyl levulinates. Chem. Eur. J. 21, 10786–10798 (2015)Google Scholar
  49. 49.
    Tejero, M.A., Ramìrez, E., Fitè, C., Tejero, J., Cunill, F.: Esterification of levulinic acid with butanol over ion exchange resins. Appl. Catal. A 517, 55–56 (2016)Google Scholar
  50. 50.
    Trombettoni, V., Bianchi, L., Zupanic, A., Porciello, A., Cuomo, M., Piermatti, I.D.O., Marrocchi, A., Vaccaro, L.: Efficient catalytic upgrading of levulinic acid into alkyl levulinates by resin-supported acids and flow reactors. Catalysts 7(8), 235–249 (2017)Google Scholar
  51. 51.
    Su, F., Ma, L., Song, D., Zhang, X., Guo, Y.: Design of a highly ordered mesoporous H3PW12O40/ZrO2–Si(Ph)Si hybrid catalyst for methyl levulinate synthesis. Green Chem. 15, 885–890 (2013)Google Scholar
  52. 52.
    Izumi, Y., Urabe, K., Onaka, A.: Zeolite, Clay, and Heteropolyacids in Organic Reactions. Tokio-VCH, Kodansha, Weinheim (1992)Google Scholar
  53. 53.
    Ren, Y., Liu, B., Zhang, Z., Lin, J.: Silver-exchanged heteropolyacid catalyst (Ag1H2PW): an efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. J. Ind. Eng. Chem. 21, 1127–1131 (2015)Google Scholar
  54. 54.
    Trombettoni, V., Sciosci, D., Bracciale, M.P., Campana, F., Santarelli, M.L., Marrocchi, A., Vaccaro, L.: Boosting biomass valorisation. Synergistic design of continuous flow reactors and water-tolerant polystyrene acid catalysts for a non-stop production of esters. Green Chem. 20, 3222–3396 (2018)Google Scholar
  55. 55.
    Timofeeva, M.N., Matrosova, M.M., Maksimov, G.M., Likholobov, V.A., Golovin, A.V., Maksimovskaya, R.I., Paukshtis, E.A.: Esterification of n-butanol with acetic acid in the presence of heteropoly acids with different structures and compositions. Kinet. Catal. 42, 868–871 (2001)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculdade de Ciências Naturais e Matemática-Campus de LhangueneUniversidade Pedagógica de MoçambiqueMaputoMozambique
  2. 2.Chemistry DepartmentFederal University of ViçosaViçosaBrazil

Personalised recommendations