Deconstruction of Pine Wood (Pinus sylvestris) Recalcitrant Structure Using Alkali Treatment for Enhancing Enzymatic Saccharification Evaluated by Congo Red

  • Dhirendra Nath BarmanEmail author
  • Md. Azizul Haque
  • Md. Murad Hossain
  • Shyamal Kumar Paul
  • Han Dae Yun
Original Paper



The changes of pine wood structure were evaluated based on Congo red (CR) adsorption in this study. Cellulose free –OH group act as electron acceptor and CR amino or azo group as electron donor that interacts each other to form H–bonds. This interaction of CR with cellulose is considered in this study to analyze the structural changes of pine wood.


Pine wood samples were treated with different concentrated NaOH solution at 130 °C for 30 min. CR adsorption of treated samples were assayed in terms of absorbance decrease of CR solution measured by spectrophotometer. Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) were used to evaluate the microstructural changes of treated samples. Finally enzymatic saccharification was carried out using commercial cellulase enzyme.


Treatment of pine wood with alkali degrades the intra and/or intermolecular H– bonds of cellulose leading to an exposure of free –OH groups. These free –OH groups bind with CR molecule while in contact with CR solution. Structural change of pine wood caused by different NaOH (0 to 20%) treatment at 130 °C for 30 min was evaluated in terms of CR adsorption. Scanning electron microscopy and Fourier transform infrared spectroscopy studies showed that 10% NaOH treated sample exposed more cellulose fibers compared to other treatments leading to more CR binding. The cellulose crystalline index was increased with increasing NaOH–treatments and lowered by the 20% NaOH–treatment due to degradation of cellusose fibres. Moreover, after 72 h, reducing sugar yield was 76.5% and 70.7% using enzyme loading of 15FP U/g and 30CB U/g from 10% and 20% NaOH treated pine wood samples, respectively. Reducing sugar yield was decreased from samples while treating more than 10% NaOH solution.


10% NaOH treatment can be considered as an effective concentration for pine wood treatment at 130 °C for 30 min. These results suggest that CR approach is supposed to be helpful for selecting the treatment condition.


Pine wood NaOH treatment Congo red Congo red cellulose interaction Enzymatic saccharification 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (03-2010-0250), Republic of Korea. Dhirendra Nath Barman was supported by a scholarship from the BK21 Plus Program, Ministry of Education & Human Resources Development, ROK.


  1. 1.
    Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusuf, S.: Effects of pretreatments of napier grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics. Waste Biomass Valoriz. 8, 755–773 (2017)CrossRefGoogle Scholar
  2. 2.
    Wistara, N.J., Pelawi, R., Fatriasari, W.: The effect of lignin content and freeness of pulp on the bioethanol productivity of Jabon wood. Waste Biomass Valoriz. 7, 1141–1146 (2016)CrossRefGoogle Scholar
  3. 3.
    Salehian, P., Karimi, K.: Alkali pretreatment for improvement of biogas and ethanol production from different waste parts of pine tree. Ind. Eng. Chem. Res. 52, 972–978 (2013)CrossRefGoogle Scholar
  4. 4.
    Arenas-Cardenas, P., Lopez-Lopez, A., Moeller-Chavez, G.E., Leon-Becerril, E.: Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valoriz. 8, 161–181 (2017)CrossRefGoogle Scholar
  5. 5.
    Munoz, C., Baeza, J., Freer, J., Mendonca, R.T.: Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. J. Ind. Microbiol. Biotechnol. 38, 1861–1866 (2011)CrossRefGoogle Scholar
  6. 6.
    Mantanis, G.I., Young, R.A., Rowell, R.M.: Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2, 1–22 (1995)Google Scholar
  7. 7.
    Mantanis, G.I., Young, R.A., Rowell, R.M.: Swelling of wood. Part IV. A statistical model for prediction of maximum swelling of wood in organic liquids. Wood Fiber Sci. 27, 22–24 (1995)Google Scholar
  8. 8.
    Bilal, M., Asgher, M., Iqbal, H.M.N., Ramzan, M.: Enhanced bioethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valoriz. 8, 2271–2281 (2017)CrossRefGoogle Scholar
  9. 9.
    Geng, X., Henderson, W.A.: Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction. Biotechnol. Bioeng. 109, 84–91 (2012)CrossRefGoogle Scholar
  10. 10.
    Matthews, J.F., Skopec, C.E., Mason, P.E., Zuccato, P., Torget, R.W., Sugiyama, J., Himmel, M.E., Brady, J.W.: Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr. Res. 341, 138–152 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Zhao, Y., Deng, Y.: Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydr. Polym. 72, 178–184 (2008)CrossRefGoogle Scholar
  12. 12.
    Haque, M.A., Kim, M.K., Barman, D.N., Kim, M.K., Yun, H.D.: A potential cellulose microfibril swelling enzyme isolated from Bacillus sp. AY8 enhances cellulose hydrolysis. Process Biochem. 50, 807–815 (2015)CrossRefGoogle Scholar
  13. 13.
    Jager, G., Girfoglio, M., Dollo, F., Rinaldi, R., Bongard, H., Commandeur, U., Fischer, R.: Spiess, A.C., Buchs, J.: How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol. Biofuels 4, 33 (2011)CrossRefGoogle Scholar
  14. 14.
    Ciovica, S., Vlaic, M., Stanciu, C., Chiuaru, R., Asandei, N.: Some aspects concerning viscose fibers dyeing uniformity. I, staple viscose dyeing uniformity. Cellul. Chem. Technol. 24, 251–261 (1990)Google Scholar
  15. 15.
    Ougiya, H., Hioki, N., Watanabe, K., Morinaga, Y., Yoshinaga, F., Samejima, M.: Relationship between the physical properties and surface area of cellulose derived from adsorbates of various molecular sizes. Biosci. Biotechnol. Biochem. 62, 1880–1884 (1998)CrossRefGoogle Scholar
  16. 16.
    Lee, S.H., Teramoto, Y., Endo, T.: Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I—effect of additives with cellulose affinity. Bioresour. Technol. 100, 275–279 (2009)CrossRefGoogle Scholar
  17. 17.
    Park, S.R., Cho, S.J., Kim, M.K., Ryu, S.K., Lim, W.J., An, C.L., Hong, S.Y., Kim, J.H., Kim, H., Yun, H.D.: Activity enhancement of Cel5Z from Pectobacterium chrysanthemi PY35 by removing C-terminal region. Biochem. Biophys. Res. Commun. 291, 425–430 (2002)CrossRefGoogle Scholar
  18. 18.
    Cho, K.M., Hong, S.Y., Lee, S.M., Kim, Y.H., Kahng, G.G., Kim, H., Yun, H.D.: A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73, 618–630 (2006)CrossRefGoogle Scholar
  19. 19.
    Haft, R.F., Gardner, J., Keating, D.: Quantitative colorimetric measurement of cellulose degradation under microbial culture conditions. Appl. Microbiol. Biotechnol. 94, 223–229 (2012)CrossRefGoogle Scholar
  20. 20.
    Yamaki, S.B., Barros, D.S., Garcia, C.M., Socoloski, P., Oliveira, O.N., Atvars, T.D.Z.: Spectroscopic studies of the intermolecular interactions of congo red and tinopal CBS with modified cellulose fibers. Langmuir 21, 5414–5420 (2005)CrossRefGoogle Scholar
  21. 21.
    Samiey, B., Dargahi, M.R.: Kinetics and thermodynamics of adsorption of congo red on cellulose. Cent. Eur. J. Chem. 8, 906–912 (2010)Google Scholar
  22. 22.
    Venkataraman, K.:Synthetic dyes. The Chemistry of Synthetic Dyes. 1 (1952).
  23. 23.
    Schuurmann, G., Funar-Timofei, S.: Multilinear regression and comparative molecular field analysis (CoMFA) of azo dye – fiber affinities. 2. Inclusion of solution-phase molecular orbital descriptors. J. Chem. Inf. Comput. Sci. 43, 1502–1512 (2003)CrossRefGoogle Scholar
  24. 24.
    Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res.J. 29, 786–794 (1959)CrossRefGoogle Scholar
  25. 25.
    TAPPI, Acid-Insoluble Lignin in Wood and Pulp, T222 om-11. TAPPI Standard Methods. TAPPI, Sirsa (2011)Google Scholar
  26. 26.
    TAPPI, Alpha-, beta- and gamma-cellulose in pulp, T203 cm-99. TAPPI standard methods. TAPPI, Sirsa (1999)Google Scholar
  27. 27.
    Pentosans in wood and pulp. T 223cm-01 (2001)Google Scholar
  28. 28.
    Lin, L., Yan, R., Liu, Y., Jiang, W.: In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresour. Technol. 101, 8217–8223 (2010)CrossRefGoogle Scholar
  29. 29.
    Blasi, C.D., Signorelli, G., Di Russo, C., Rea, G.: Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 2216–2224 (1999)Google Scholar
  30. 30.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  31. 31.
    Haque, M.A., Barman, D.N., Kang, T.H., Kim, M.K., Kim, J., Kim, H., Yun, H.D.: Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosyst. Eng. 114, 294–305 (2013)CrossRefGoogle Scholar
  32. 32.
    Mazeau, K., Wyszomirski, M.: Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19, 1495–1506 (2012)CrossRefGoogle Scholar
  33. 33.
    Wang, H., Srinivasan, R., Yu, F., Steele, P., Li, Q., Mitchell, B.: Effect of acid, alkali, and steam explosion pretreatments on characteristics of bio-oil produced from pinewood. Energy Fuels 25, 3758–3764 (2011)CrossRefGoogle Scholar
  34. 34.
    You, Z., Wei, T., Cheng, J.J.: Improving anaerobic codigestion of corn stover using sodium hydroxide pretreatment. Energy Fuels 28, 549–554 (2014)CrossRefGoogle Scholar
  35. 35.
    Chilari, D., Dimos, K., Georgoula, G., Paschos, T., Mamma, D., Louloudi, A., Papayannakos, N., Kekos, D.: Bioethanol production from alkali-treated cotton stalks at high solids loading applying non-isothermal simultaneous saccharification and fermentation. Waste Biomass Valoriz. 8, 1919–1929 (2017)CrossRefGoogle Scholar
  36. 36.
    Jeoh, T., Ishizawa, C.I., Davis, M.F., Himmel, M.E., Adney, W.S., Johnson, D.K.: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98, 112–122 (2007)CrossRefGoogle Scholar
  37. 37.
    Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J., Schols, H.A.: Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98, 2034–2042 (2007)CrossRefGoogle Scholar
  38. 38.
    Bhatia, L., Johri, S.: FTIR Analysis and optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from peels of Ananas cosmosus by Mucor indicus MTCC 4349. Waste Biomass Valoriz. 7, 427–438 (2016)CrossRefGoogle Scholar
  39. 39.
    Soundarrajan, C., Vennison, J.S., Saraswathi, K., Emmanuel, C.E.S.: Does chip size of the lignocellulosic bagasse influence lignin degradation with NaOH treatment? Biosci. Biotechnol. Res. Asia 8, 765–769 (2011)CrossRefGoogle Scholar
  40. 40.
    Liu, L., Sun, J., Li, M., Wang, S., Pei, H., Zhang, J.: Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour. Technol. 100, 5853–5858 (2009)CrossRefGoogle Scholar
  41. 41.
    Lu, J., Zhou, P.: Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. Bioresour. Technol. 102, 6966–6971 (2011)CrossRefGoogle Scholar
  42. 42.
    Sun, X.F., Xu, F., Sun, R.C., Wang, Y.X., Fowler, P., Baird, M.S.: Characteristics of degraded lignins obtained from steam exploded wheat straw. Polym. Degrad. Stab. 86, 245–256 (2004)CrossRefGoogle Scholar
  43. 43.
    Xiao, B., Sun, X.F., Sun, R.: Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. 74, 307–319 (2001)CrossRefGoogle Scholar
  44. 44.
    Kacurakova, M., Wilson, R.H.: Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr. Polym. 44, 291–303 (2001)CrossRefGoogle Scholar
  45. 45.
    Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S.: Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr. Res. 340, 97–106 (2005)CrossRefGoogle Scholar
  46. 46.
    Barman, D.N., Haque, M.A., Kang, T.H., Kim, G.H., Kim, T.Y., Kim, M.K., Yun, H.D.: Effect of mild alkali pretreatment on structural changes of reed (Phragmites communis Trinius) straw. Environ. Technol. 35, 232–241 (2014)CrossRefGoogle Scholar
  47. 47.
    Gupta, B.S., Jelle, B.P., Gao, T.: Wood facade materials ageing analysis by FTIR spectroscopy. Proc. Inst. Civ. Eng. Constr. Mater. 168, 219–231 (2015)CrossRefGoogle Scholar
  48. 48.
    Haque, M.A., Akhtar, M., Halilu, A., Yun, H.D.: Validation and extended application of cellulose microfibril swelling enzyme assay method to alkali induced swelling of cellulose. J. Chem. Eng. Bioanal. Chem. 2, 62–69 (2017)Google Scholar
  49. 49.
    Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S.: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101, 4900–4906 (2010)CrossRefGoogle Scholar
  50. 50.
    Kim, S., Holtzapple, M.T.: Effect of structural features on enzyme digestibility of corn stover. Bioresour. Technol. 97, 583–591 (2006)CrossRefGoogle Scholar
  51. 51.
    Bak, J.S., Ko, J.K., Han, Y.H., Lee, B.C., Choi, I.G., Kim, K.H.: Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour. Technol. 100, 1285–1290 (2009)CrossRefGoogle Scholar
  52. 52.
    Barman, D.N., Haque, M.A., Kang, T.H., Kim, M.K., Kim, J., Kim, H., Yun, H.D.: Alkali pretreatment of wheat straw (Triticum aestivum) at boiling temperature for producing a bioethanol precursor. Biosci. Biotechnol. Biochem. 76, 2201–2207 (2012)CrossRefGoogle Scholar
  53. 53.
    Sheikh, M.M.I., Kim, C.H., Park, H.J., Kim, S.H., Kim, G.C., Lee, J.Y., Sim, S.W., Kim, J.W.: Effect of torrefaction for the pretreatment of rice straw for ethanol production. J. Sci. Food Agric. 93, 3198–3204 (2013)CrossRefGoogle Scholar
  54. 54.
    Garmakhany, A.D., Kashaninejad, M., Aalami, M., Maghsoudlou, Y., Khomieri, M., Tabil, L.G.: Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment. J. Sci. Food Agric. 94, 1607–1613 (2014)CrossRefGoogle Scholar
  55. 55.
    Zeng, Y., Yang, X., Yu, H., Zhang, X., Ma, F.: Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi. J. Agric. Food Chem. 59, 9965–9971 (2011)CrossRefGoogle Scholar
  56. 56.
    Mou, H., Li, B., Fardim, P.: Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis. Energy Fuels 28, 4288–4293 (2014)CrossRefGoogle Scholar
  57. 57.
    Newman, R.H.: Homogeneity in cellulose crystallinity between samples of Pinus radiata wood. Holzforschung 58, 91–96 (2004)CrossRefGoogle Scholar
  58. 58.
    Kuo, C.H., Lee, C.K.: Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour. Technol. 100, 866–871 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Dhirendra Nath Barman
    • 1
    Email author
  • Md. Azizul Haque
    • 2
  • Md. Murad Hossain
    • 1
  • Shyamal Kumar Paul
    • 3
  • Han Dae Yun
    • 4
    • 5
  1. 1.Department of Biotechnology and Genetic EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh
  2. 2.Department of Biochemistry and Molecular BiologyHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
  3. 3.Department of Fisheries and Marine ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
  4. 4.Division of Applied Life Science (BK21 Program)Gyeongsang National UniversityChinjuRepublic of Korea
  5. 5.Research Institute of Agriculture and Life ScienceGyeongsang National UniversityChinjuRepublic of Korea

Personalised recommendations