Advertisement

Biogas Production from Organic Waste: Recent Progress and Perspectives

  • M. R. Atelge
  • David Krisa
  • Gopalakrishnan KumarEmail author
  • Cigdem Eskicioglu
  • Dinh Duc Nguyen
  • Soon Woong Chang
  • A. E. Atabani
  • Alaa H. Al-Muhtaseb
  • S. Unalan
Original Paper
  • 168 Downloads

Abstract

Anaerobic digestion (AD) from organic waste has gained worldwide attention in reducing greenhouse gas emissions, lowering fossil fuel combustion, and facilitating a sustainable renewable energy supply. Biogas mainly consists of methane (CH4) (50–75%), carbon dioxide (CO2) (25–50%), hydrogen sulphides (H2S), hydrogen (H2), ammonia (NH3) (1–2%) and traces of other gases such as oxygen (O2) and nitrogen (N2). Methane can replace fossil fuels in various applications such as heat and power generation and the transportation sector. The degradation of organic waste through an AD process offers many advantages, such as the decrease of pathogens and prevention of odour release. The digestate from anaerobic fermentation is a valuable fertilizer, however, the amount of organic materials currently available for biogas production is still limited. New substrates, as well as more effective conversion technologies, are needed to grow this industry globally. This paper reviewed the latest trends and progress in biogas production technologies including potential feedstock. Recycling of waste has recently become an important topic and has been explored in this paper.

Keywords

Biogas Anaerobic digestion Conversion technologies Recycling of waste 

List of Symbols

CO2

Carbon dioxide

CH4

Methane

CO2e

Carbon dioxide-equivalents

AD

Anaerobic digestion

GHG

Greenhouse gases

NH3

Ammonia

H2S

Sulphide

EJ/year

Exajoule/year

TWh

Terawatt hours

TS

Total solids

VS

Volatile solids

VFA

Volatile fatty acids

BMP

Biochemical methane potential

C/N

The carbon-to-nitrogen ratio

DM

Dry matter

ODM

Organic dry matter

COD

Chemical oxygen demand

HRT

Hydraulic retention time

OLR

Organic loading rate

Notes

Acknowledgements

Authors would like to acknowledge The Unit of Scientific Research Project Coordination (Bilimsel Araştırma Projeleri Koordinatörlüğü, BAP) of Erciyes Univerity, Kayseri, Turkey for the financial support under the University Project: FOA-2018-8183 (Priority Research Project) (Öncelikli Araştırma Proje). This work was also supported in part by grants from the Korea Ministry of Environment, as a “Global Top Project” (Project No.: 2016002210003).

References

  1. 1.
    EEA: Climate Change, Impacts And Vulnerability in Europe 2016: An Indicator-Based Report, p. 188. EEA, Copenhagen (2017)Google Scholar
  2. 2.
    EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2015. Environmental Protection Agency (2017)Google Scholar
  3. 3.
    CAIT: CAIT Historical—Explore Historic Greenhouse Gas Emissions. http://cait2.wri.org/historical (2014). Accessed 30 Oct 2018
  4. 4.
    EPA: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2030. Version: revised December. EPA, Washington, DC (2012)Google Scholar
  5. 5.
    Abbasi, T., Tauseef, S., Abbasi, S.A.: Biogas Energy, vol. 2. Springer, New York (2011)Google Scholar
  6. 6.
    Wellinger, A., Murphy, J.D., Baxter, D.: The Biogas Handbook: Science, Production and Applications. Elsevier, Amsterdam (2013)CrossRefGoogle Scholar
  7. 7.
    ScienceDirect: ScienceDirect—Journals Search about “biogas” or “anaerobic digestion”. http://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_temp=search.tmpl&md5=be86fcf199953fc3d5e2cd09e0389370 (2017). Accessed 16 Aug 2017
  8. 8.
    Onojo, O.J., Chukwudebe, G.A., Okafor, E.N.C., Ononiwu, G.C., Chukwuchekwa, N., Opara, R.O., Dike, D.O.: Estimation of the electric power potential of human waste using students hostel soak-away pits. Am. J. Eng. Res. 2(9), 198–203 (2013)Google Scholar
  9. 9.
    Buswell, A., Hatfield, W.: Anaerobic Fermentations. Bulletin 32 (1936)Google Scholar
  10. 10.
    Murphy, J., Braun, R., Weiland, P., Wellinger, A.: Biogas from crop digestion. In: IEA Bioenergy Task, vol. 37, pp. 1–23 (2011)Google Scholar
  11. 11.
    Mattioli, A., Boscaro, D., Dalla Venezia, F., Santacroce, F.C., Pezzuolo, A., Sartori, L., Bolzonella, D.: Biogas from residual grass: a territorial approach for sustainable bioenergy production. Waste Biomass Valoriz. 8(8), 2747–2756 (2017).  https://doi.org/10.1007/s12649-017-0006-y CrossRefGoogle Scholar
  12. 12.
    EEA: Renewable Energy in Europe 2016—Recent Growth and Knock-on Effects. European Environmental Agency (2016)Google Scholar
  13. 13.
    F.S.-U. Centre: Global Trends in Renewable Energy Investment 2016 (2016)Google Scholar
  14. 14.
    Solarte-toro, J.C., Chacón-pérez, Y., Cardona-alzate, C.A.: Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 33, 52–62 (2018).  https://doi.org/10.1016/j.ejbt.2018.03.005 CrossRefGoogle Scholar
  15. 15.
    Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C.: Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change (2011)Google Scholar
  16. 16.
    Offermann, R., Seidenberger, T., Thrän, D., Kaltschmitt, M., Zinoviev, S., Miertus, S.: Assessment of global bioenergy potentials. Mitig. Adapt. Strateg. Glob. change 16(1), 103–115 (2011).  https://doi.org/10.1007/s11027-010-9247-9 CrossRefGoogle Scholar
  17. 17.
    EEA: Renewable Energy in Europe 2017—Recent Growth and Knock-on Effects. European Environment Agency, Luxembourg (2017)Google Scholar
  18. 18.
    EBA: Biogas Report 2014. European Biogas Association (cited 2 July 2017). http://european-biogas.eu/wp-content/uploads/2015/01/EBA-Biogas-Report-2014.pdf (2015)
  19. 19.
    ABC: How Many Operational Anaerobic Digesters are There in the U.S.? https://www.americanbiogascouncil.org/biogas_questions.asp. Accessed 15 Sep 2017
  20. 20.
    EPA: AgSTAR Data and Trends. https://www.epa.gov/agstar/agstar-data-and-trends#adfacts (2015). Accessed 9 Aug 2017
  21. 21.
  22. 22.
    Lambrecht, S.: The clean energy sector in Japan: an analysis on investment and industrial cooperation opportunities for EU SMEs. In: Comprehensive Energy Statistics and Annual Report on National Accounts, February 2014. EU-Japan Centre for Industrial Cooperation, Minerva. Cited in Agency for Natural Resources and Energy of Japan (2012)Google Scholar
  23. 23.
    Ren21: Renewables 2017 Global Status Report. Renewable Energy Policy Network for the 21st Century, Paris (2017)Google Scholar
  24. 24.
    Ming, Z., Ximei, L., Na, L., Song, X.: Overall review of renewable energy tariff policy in China: evolution, implementation, problems and countermeasures. Renew. Sustain. Energy Rev. 25, 260–271 (2013).  https://doi.org/10.1016/j.rser.2013.04.026 CrossRefGoogle Scholar
  25. 25.
    MNER: Annual Report 2016/2017 in India. Ministry of New and Renewable Energy, Government of India (2017)Google Scholar
  26. 26.
    Bagge, E., Persson, M., Johansson, K.E.: Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J. Appl. Microbiol. 109(5), 1549–1565 (2010).  https://doi.org/10.1111/j.1365-2672.2010.04790.x CrossRefGoogle Scholar
  27. 27.
    EC: In: The European Parliament (ed) Regulation (EC) No. 1069/2009 of the European Parliament. Official Journal of the European Union (2009)Google Scholar
  28. 28.
    EC: In: The European Parliament (ed) Regulation (EC) No. 1774/2002 of the European Parliament. Official Journal of the European Union (2002)Google Scholar
  29. 29.
    EC: In: The European Parliament (ed) Directive 2008/98/EC of the European Parliament. Official Journal of the European Union (2008)Google Scholar
  30. 30.
    Bangalore, M., Hochman, G., Zilberman, D.: Policy incentives and adoption of agricultural anaerobic digestion: a survey of Europe and the United States. Renew. Energy 97, 559–571 (2016).  https://doi.org/10.1016/j.renene.2016.05.062 CrossRefGoogle Scholar
  31. 31.
    Bochmann, G., Montgomery, L.F.: Storage and pre-treatment of substrates for biogas production. In: The Biogas Handbook. Woodhead Publishing Limited, Cambridge (2013)Google Scholar
  32. 32.
    EPA: In: Environmental Protection Agency (ed) Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways Under Renewable Fuel Standard Program Documents, 40 CFR Part 80. Environmental Protection Agency (2014)Google Scholar
  33. 33.
    Hua, Y., Oliphant, M., Hu, E.J.: Development of renewable energy in Australia and China: a comparison of policies and status. Renew. Energy 85, 1044–1051 (2016).  https://doi.org/10.1016/j.renene.2015.07.060 CrossRefGoogle Scholar
  34. 34.
    Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R.: Biogas Handbook. University of Southern Denmark, Esbjerg. ISBN 978-87-992962-0-0, (2008)Google Scholar
  35. 35.
    Holm-Nielsen, J.B., Oleskowicz-Popiel, P.: Process control in biogas plants. In: The Biogas Handbook. pp. 228–247. Elsevier (2013).  https://doi.org/10.1533/9780857097415.2.228
  36. 36.
    Goswami, R., Chattopadhyay, P., Shome, A., Banerjee, S.N., Chakraborty, A.K., Mathew, A.K., Chaudhury, S.: An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3 Biotech 6(1), 72 (2016).  https://doi.org/10.1007/s13205-016-0395-9 CrossRefGoogle Scholar
  37. 37.
    Deublein, D., Steinhauser, A.: Biogas from Waste and Renewable Resources: An Introduction. Wiley, Weinheim (2011)Google Scholar
  38. 38.
    Javad Asgari, M., Safavi, K., Mortazaeinezahad, F.: Landfill biogas production process (2011).  https://doi.org/10.13140/2.1.1761.0886
  39. 39.
    Eurostat: Agriculture, Forestry and Fishery Statistics, p. 224 (2017)Google Scholar
  40. 40.
    Fermoso, F.G., Serrano, A., Alonso-Fariñas, B., Fernández-Bolaños, J., Borja, R., Rodríguez, G.: Valuable compounds extraction, anaerobic digestion and composting: a leading biorefinery approach for agricultural waste. J. Agric. Food Chem. (2018).  https://doi.org/10.1021/acs.jafc.8b02667 CrossRefGoogle Scholar
  41. 41.
    Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H.: Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98(17), 3204–3212 (2007).  https://doi.org/10.1016/j.biortech.2006.07.007 CrossRefGoogle Scholar
  42. 42.
    Gissén, C., Prade, T., Kreuger, E., Nges, I.A., Rosenqvist, H., Svensson, S.-E., Lantz, M., Mattsson, J.E., Börjesson, P., Björnsson, L.: Comparing energy crops for biogas production—yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 64, 199–210 (2014).  https://doi.org/10.1016/j.biombioe.2014.03.061 CrossRefGoogle Scholar
  43. 43.
    Lehtomäki, A.: Biogas production from energy crops and crop residues. University of Jyväskylä (2006)Google Scholar
  44. 44.
    Lehtomäki, A., Huttunen, S., Lehtinen, T., Rintala, J.: Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour. Technol. 99(8), 3267–3278 (2008).  https://doi.org/10.1016/j.biortech.2007.04.072 CrossRefGoogle Scholar
  45. 45.
    Franco, R.T., Buffière, P., Bayard, R.: Effects of storage conditions, total solids content and silage additives on fermentation profiles and methane preservation of cattle manure before anaerobic digestion. Waste Biomass Valoriz. (2018).  https://doi.org/10.1007/s12649-018-0255-4 CrossRefGoogle Scholar
  46. 46.
    Rodriguez, C., Alaswad, A., Benyounis, K.Y., Olabi, A.G.: Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 68, 1193–1204 (2017).  https://doi.org/10.1016/j.rser.2016.02.022 CrossRefGoogle Scholar
  47. 47.
    Frigon, J.-C., Mehta, P., Guiot, S.R.: Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy 36, 1–11 (2012).  https://doi.org/10.1016/j.biombioe.2011.02.013 CrossRefGoogle Scholar
  48. 48.
    Solé-Bundó, M., Eskicioglu, C., Garfí, M., Carrère, H., Ferrer, I.: Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresour. Technol. 237, 89–98 (2017).  https://doi.org/10.1016/j.biortech.2017.03.151 CrossRefGoogle Scholar
  49. 49.
    Dahunsi, S.O., Oranusi, S., Efeovbokhan, V.E.: Optimization of pretreatment, process performance, mass and energy balance in the anaerobic digestion of Arachis hypogaea (Peanut) hull. Energy Convers. Manag. 139, 260–275 (2017).  https://doi.org/10.1016/j.enconman.2017.02.063 CrossRefGoogle Scholar
  50. 50.
    Ji, C., Kong, C.-X., Mei, Z.-L., Li, J.: A review of the anaerobic digestion of fruit and vegetable waste. Appl. Biochem. Biotechnol. 183(3), 906–922 (2017).  https://doi.org/10.1007/s12010-017-2472-x CrossRefGoogle Scholar
  51. 51.
    Patinvoh, R.J., Lundin, M., Taherzadeh, M.J., Horváth, I.S.: Dry anaerobic co-digestion of citrus wastes with keratin and lignocellulosic wastes: batch and continuous processes. Waste Biomass Valoriz. (2018).  https://doi.org/10.1007/s12649-018-0447-y CrossRefGoogle Scholar
  52. 52.
    Miezah, K., Obiri-Danso, K., Kádár, Z., Heiske, S., Fei-Baffoe, B., Mensah, M., Meyer, A.S.: Municipal solid waste management in a low income economy through biogas and bioethanol production. Waste Biomass Valoriz. 8(1), 115–127 (2017).  https://doi.org/10.1007/s12649-016-9566-5 CrossRefGoogle Scholar
  53. 53.
    Hom-Diaz, A., Baldi, F., Blánquez, P., Lombardi, L., Martín-González, L., Vicent, T.: Exhausted fungal biomass as a feedstock for increasing methane production during the anaerobic digestion of organic wastes. Waste Biomass Valoriz. 7(2), 307–315 (2016).  https://doi.org/10.1007/s12649-015-9450-8 CrossRefGoogle Scholar
  54. 54.
    Chen, G., Zheng, Z., Yang, S., Fang, C., Zou, X., Zhang, J.: Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces. Fuel Process. Technol. 91(11), 1416–1421 (2010).  https://doi.org/10.1016/j.fuproc.2010.05.015 CrossRefGoogle Scholar
  55. 55.
    Dandikas, V., Heuwinkel, H., Lichti, F., Drewes, J.E., Koch, K.: Correlation between biogas yield and chemical composition of grassland plant species. Energy Fuels 29(11), 7221–7229 (2015).  https://doi.org/10.1021/acs.energyfuels.5b01257 CrossRefGoogle Scholar
  56. 56.
    Nges, I.A., Li, C., Wang, B., Xiao, L., Yi, Z., Liu, J.: Physio-chemical pretreatments for improved methane potential of Miscanthus lutarioriparius. Fuel 166, 29–35 (2016).  https://doi.org/10.1016/j.fuel.2015.10.108 CrossRefGoogle Scholar
  57. 57.
    Seppälä, M., Pyykkönen, V., Väisänen, A., Rintala, J.: Biomethane production from maize and liquid cow manure—effect of share of maize, post-methanation potential and digestate characteristics. Fuel 107, 209–216 (2013).  https://doi.org/10.1016/j.fuel.2012.12.069 CrossRefGoogle Scholar
  58. 58.
    Thygesen, O., Sommer, S.G., Shin, S.G., Triolo, J.M.: Residual biochemical methane potential (BMP) of concentrated digestate from full-scale biogas plants. Fuel 132, 44–46 (2014).  https://doi.org/10.1016/j.fuel.2014.04.062 CrossRefGoogle Scholar
  59. 59.
    Hoornweg, D., Bhada-Tata, P.: What a Waste: A Global Review of Solid Waste Management, pp. 1–116. World Bank, Washington, DC (2012)Google Scholar
  60. 60.
    Vergara, S.E., Tchobanoglous, G.: Municipal solid waste and the environment: a global perspective. Annu. Rev. Environ. Resour. 37, 277–309 (2012).  https://doi.org/10.1146/annurev-environ-050511-122532 CrossRefGoogle Scholar
  61. 61.
    Albanna, M.: Anaerobic digestion of the organic fraction of municipal solid waste. In: Management of Microbial Resources in the Environment, pp. 313–340. Springer, Dordrecht (2013)Google Scholar
  62. 62.
    Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 55, 260–265 (2013).  https://doi.org/10.1016/j.renene.2012.12.044 CrossRefGoogle Scholar
  63. 63.
    Ara, E., Sartaj, M., Kennedy, K.: Enhanced biogas production by anaerobic co-digestion from a trinary mix substrate over a binary mix substrate. Waste Manag. Res. 33(6), 578–587 (2015).  https://doi.org/10.1177/0734242X15584844 CrossRefGoogle Scholar
  64. 64.
    Silvestre, G., Bonmatí, A., Fernández, B.: Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: effect of collection system and particle size. Waste Manag. 43, 137–143 (2015).  https://doi.org/10.1016/j.wasman.2015.06.029 CrossRefGoogle Scholar
  65. 65.
    Borowski, S.: Temperature-phased anaerobic digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge. Int. Biodeterior. Biodegrad. 105, 106–113 (2015).  https://doi.org/10.1016/j.ibiod.2015.08.022 CrossRefGoogle Scholar
  66. 66.
    Zahedi, S., Solera, R., Micolucci, F., Cavinato, C., Bolzonella, D.: Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste. Waste Manag. 49, 40–46 (2016).  https://doi.org/10.1016/j.wasman.2016.01.016 CrossRefGoogle Scholar
  67. 67.
    Blake, L.I., Halim, F.A., Gray, C., Mair, R., Manning, D.A.C., Sallis, P., Hutchinson, H., Gray, N.D.: Evaluating an anaerobic digestion (AD) feedstock derived from a novel non-source segregated municipal solid waste (MSW) product. Waste Manag. 59, 149–159 (2017).  https://doi.org/10.1016/j.wasman.2016.10.031 CrossRefGoogle Scholar
  68. 68.
    Rodríguez, A., Ángel, J., Rivero, E., Acevedo, P., Santis, A., Cabeza, I., Acosta, M., Hernández, M.: Evaluation of the biochemical methane potential of pig manure, organic fraction of municipal solid waste and cocoa industry residues in Colombia. Chem. Eng. Trans. 57, 55–60 (2017).  https://doi.org/10.3303/CET1757010 CrossRefGoogle Scholar
  69. 69.
    Tsapekos, P., Kougias, P.G., Kuthiala, S., Angelidaki, I.: Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers. Manag. 159(December 2017), 1–6 (2018).  https://doi.org/10.1016/j.enconman.2018.01.002 CrossRefGoogle Scholar
  70. 70.
    Pavi, S., Kramer, L.E., Gomes, L.P., Miranda, L.A.S.: Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour. Technol. 228, 362–367 (2017).  https://doi.org/10.1016/j.biortech.2017.01.003 CrossRefGoogle Scholar
  71. 71.
    Guven, H., Akca, M.S., Iren, E., Keles, F., Ozturk, I., Altinbas, M.: Co-digestion performance of organic fraction of municipal solid waste with leachate: preliminary studies. Waste Manag. 71, 775–784 (2018).  https://doi.org/10.1016/j.wasman.2017.04.039 CrossRefGoogle Scholar
  72. 72.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99(10), 4044–4064 (2008).  https://doi.org/10.1016/j.biortech.2007.01.057 CrossRefGoogle Scholar
  73. 73.
    Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014).  https://doi.org/10.1016/j.rser.2014.05.038 CrossRefGoogle Scholar
  74. 74.
    Wang, Q., Peng, L., Su, H.: The effect of a buffer function on the semi-continuous anaerobic digestion. Bioresour. Technol. 139, 43–49 (2013).  https://doi.org/10.1016/j.biortech.2013.04.006 CrossRefGoogle Scholar
  75. 75.
    Dhar, H., Kumar, P., Kumar, S., Mukherjee, S., Vaidya, A.N.: Effect of organic loading rate during anaerobic digestion of municipal solid waste. Bioresour. Technol. 217, 56–61 (2016).  https://doi.org/10.1016/j.biortech.2015.12.004 CrossRefGoogle Scholar
  76. 76.
    Zhao, J., Liu, Y., Wang, D., Chen, F., Li, X., Zeng, G., Yang, Q.: Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 67, 308–314 (2017).  https://doi.org/10.1016/j.wasman.2017.05.016 CrossRefGoogle Scholar
  77. 77.
    Fisgativa, H., Tremier, A., Dabert, P.: Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Manag. 50, 264–274 (2016).  https://doi.org/10.1016/j.wasman.2016.01.041 CrossRefGoogle Scholar
  78. 78.
    Edwiges, T., Frare, L., Mayer, B., Lins, L., Triolo, J.M., Flotats, X., de Mendonça, Costa, M.S.S.: Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag. 71, 618–625 (2018).  https://doi.org/10.1016/j.wasman.2017.05.030 CrossRefGoogle Scholar
  79. 79.
    Gil, A., Toledo, M., Siles, J.A., Martín, M.A.: Multivariate analysis and biodegradability test to evaluate different organic wastes for biological treatments: anaerobic co-digestion and co-composting. Waste Manag. 78, 819–828 (2018).  https://doi.org/10.1016/j.wasman.2018.06.052 CrossRefGoogle Scholar
  80. 80.
    Siles, J.A., Vargas, F., Gutiérrez, M.C., Chica, A.F., Martín, M.A.: Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies. Bioresour. Technol. 211, 173–182 (2016).  https://doi.org/10.1016/j.biortech.2016.03.056 CrossRefGoogle Scholar
  81. 81.
    Dahunsi, S.O., Oranusi, S., Owolabi, J.B., Efeovbokhan, V.E.: Comparative biogas generation from fruit peels of fluted pumpkin (Telfairia occidentalis) and its optimization. Bioresour. Technol. 221, 517–525 (2016).  https://doi.org/10.1016/j.biortech.2016.09.065 CrossRefGoogle Scholar
  82. 82.
    Serrano, A., Siles, J.A., Gutiérrez, M.C., Martín, M.: Improvement of the biomethanization of sewage sludge by thermal pre-treatment and co-digestion with strawberry extrudate. J. Clean. Prod. 90, 25–33 (2015).  https://doi.org/10.1016/j.jclepro.2014.11.039 CrossRefGoogle Scholar
  83. 83.
    Pereira, G.S., Cipriani, M., Wisbeck, E., Souza, O., Strapazzon, J.O., Gern, R.M.M.: Onion juice waste for production of Pleurotus sajor-caju and pectinases. Food Bioprod. Process. 106, 11–18 (2017).  https://doi.org/10.1016/j.fbp.2017.08.006 CrossRefGoogle Scholar
  84. 84.
    Jin, Y., Li, Y., Li, J.: Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion. J. Environ. Manag. 180, 291–300 (2016).  https://doi.org/10.1016/j.jenvman.2016.05.047 CrossRefGoogle Scholar
  85. 85.
    Ali, M., Sreekrishnan, T.: Aquatic toxicity from pulp and paper mill effluents: a review. Adv. Environ. Res. 5(2), 175–196 (2001).  https://doi.org/10.1016/S1093-0191(00)00055-1 CrossRefGoogle Scholar
  86. 86.
    Veluchamy, C., Kalamdhad, A.S.: A mass diffusion model on the effect of moisture content for solid-state anaerobic digestion. J. Clean. Prod. 162, 371–379 (2017).  https://doi.org/10.1016/j.jclepro.2017.06.099 CrossRefGoogle Scholar
  87. 87.
    Veluchamy, C., Kalamdhad, A.S.: Biochemical methane potential test for pulp and paper mill sludge with different food/microorganisms ratios and its kinetics. Int. Biodeterior. Biodegrad. 117, 197–204 (2017).  https://doi.org/10.1016/j.ibiod.2017.01.005 CrossRefGoogle Scholar
  88. 88.
    Meyer, T., Edwards, E.A.: Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 65, 321–349 (2014).  https://doi.org/10.1016/j.watres.2014.07.022 CrossRefGoogle Scholar
  89. 89.
    Tao, R., Lakaniemi, A.-M., Rintala, J.A.: Cultivation of Scenedesmus acuminatus in different liquid digestates from anaerobic digestion of pulp and paper industry biosludge. Bioresour. Technol.. 245, 706–713 (2017).  https://doi.org/10.1016/j.biortech.2017.08.218 CrossRefGoogle Scholar
  90. 90.
    Lin, Y., Liang, J., Zeng, C., Wang, D., Lin, H.: Anaerobic digestion of pulp and paper mill sludge pretreated by microbial consortium OEM1 with simultaneous degradation of lignocellulose and chlorophenols. Renew. Energy 108, 108–115 (2017).  https://doi.org/10.1016/j.renene.2017.02.049 CrossRefGoogle Scholar
  91. 91.
    Kinnunen, V., Ylä-Outinen, A., Rintala, J.: Mesophilic anaerobic digestion of pulp and paper industry biosludge—long-term reactor performance and effects of thermal pretreatment. Water Res. 87, 105–111 (2015).  https://doi.org/10.1016/j.watres.2015.08.053 CrossRefGoogle Scholar
  92. 92.
    Chatterjee, P., Lahtinen, L., Kokko, M., Rintala, J.: Remediation of sedimented fiber originating from pulp and paper industry: laboratory scale anaerobic reactor studies and ideas of scaling up. Water Res. 143, 209–217 (2018).  https://doi.org/10.1016/j.watres.2018.06.054 CrossRefGoogle Scholar
  93. 93.
    Jeihanipour, A., Karimi, K., Niklasson, C., Taherzadeh, M.J.: A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manag. 30(12), 2504–2509 (2010).  https://doi.org/10.1016/j.wasman.2010.06.026 CrossRefGoogle Scholar
  94. 94.
    Chan, Y.J., Chong, M.F., Law, C.L., Hassell, D.: A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155(1), 1–18 (2009).  https://doi.org/10.1016/j.cej.2009.06.041 CrossRefGoogle Scholar
  95. 95.
    Jeihanipour, A., Aslanzadeh, S., Rajendran, K., Balasubramanian, G., Taherzadeh, M.J.: High-rate biogas production from waste textiles using a two-stage process. Renew. Energy 52, 128–135 (2013).  https://doi.org/10.1016/j.renene.2012.10.042 CrossRefGoogle Scholar
  96. 96.
    Apollo, S., Onyango, M.S., Ochieng, A.: Integrated UV photodegradation and anaerobic digestion of textile dye for efficient biogas production using zeolite. Chem. Eng. J. 245, 241–247 (2014).  https://doi.org/10.1016/j.cej.2014.02.027 CrossRefGoogle Scholar
  97. 97.
    Lin, C.-Y., Nguyen, M.-L.T., Lay, C.-H.: Starch-containing textile wastewater treatment for biogas and microalgae biomass production. J. Clean. Prod. 168, 331–337 (2017).  https://doi.org/10.1016/j.jclepro.2017.09.036 CrossRefGoogle Scholar
  98. 98.
    Haak, L., Roy, R., Pagilla, K.: Toxicity and biogas production potential of refinery waste sludge for anaerobic digestion. Chemosphere 144, 1170–1176 (2016).  https://doi.org/10.1016/j.chemosphere.2015.09.099 CrossRefGoogle Scholar
  99. 99.
    Choromański, P., Karwowska, E., Łebkowska, M.: The influence of petroleum products on the methane fermentation process. J. Hazard. Mater. 301, 327–331 (2016).  https://doi.org/10.1016/j.jhazmat.2015.09.011 CrossRefGoogle Scholar
  100. 100.
    Wang, Y., Wang, Q., Li, M., Yang, Y., He, W., Yan, G., Guo, S.: An alternative anaerobic treatment process for treatment of heavy oil refinery wastewater containing polar organics. Biochem. Eng. J. 105, 44–51 (2016).  https://doi.org/10.1016/j.bej.2015.08.012 CrossRefGoogle Scholar
  101. 101.
    Mehryar, E., Ding, W.M., Hemmat, A., Hassan, M., Bi, J.H., Huang, H.Y., Kafashan, J.: Anaerobic co-digestion of oil refinery wastewater and chicken manure to produce biogas, and kinetic parameters determination in batch reactors. Agron. Res. 15(5), 1983–1996 (2017).  https://doi.org/10.15159/AR.17.072 CrossRefGoogle Scholar
  102. 102.
    Zhang, W., Heaven, S., Banks, C.J.: Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste. Polym. Degrad. Stab. 147, 76–88 (2018).  https://doi.org/10.1016/j.polymdegradstab.2017.11.005 CrossRefGoogle Scholar
  103. 103.
    Drosg, B., Wirthensohn, T., Konrad, G., Hornbachner, D., Resch, C., Wäger, F., Loderer, C., Waltenberger, R., Kirchmayr, R., Braun, R.: Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production. Water Sci. Technol. 58(7), 1483–1489 (2008).  https://doi.org/10.2166/wst.2008.515 CrossRefGoogle Scholar
  104. 104.
    Cassidy, D., Hirl, P., Belia, E.: Methane production from the soluble fraction of distillers’ dried grains with solubles in anaerobic sequencing batch reactors. Water Environ. Res. 80(6), 570–575 (2008).  https://doi.org/10.2175/106143007X221517 CrossRefGoogle Scholar
  105. 105.
    Rosentrater, K.A., Hall, H.R., Hansen, C.L.: Anaerobic digestion potential for ethanol processing residues. In: 2006 ASAE Annual Meeting 2006, p. 1. American Society of Agricultural and Biological EngineersGoogle Scholar
  106. 106.
    López, J.ÁS., de los Santos, M.Á.M., Pérez, A.F.C., Martín, A.M.: Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresour. Technol. 100(23), 5609–5615 (2009).  https://doi.org/10.1016/j.biortech.2009.06.017 CrossRefGoogle Scholar
  107. 107.
    Zahedi, S., Solera, R., García-Morales, J., Ennouri, H., Sales, D.: Evaluation of the effect of glycerol supplementation on the anaerobic digestion of real municipal solid waste in batch mode. Fuel 193, 15–21 (2017).  https://doi.org/10.1016/j.fuel.2016.12.024 CrossRefGoogle Scholar
  108. 108.
    Siles, J., Martín, M., Chica, A., Martín, A.: Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour. Technol. 101(16), 6315–6321 (2010).  https://doi.org/10.1016/j.biortech.2010.03.042 CrossRefGoogle Scholar
  109. 109.
    Khuntia, H.K., Chanakya, H.N., Siddiqha, A., Thomas, C., Mukherjee, N., Janardhana, N.: Anaerobic digestion of the inedible oil biodiesel residues for value addition. Sustain. Energy Technol. Assess. 22, 9–17 (2017).  https://doi.org/10.1016/j.seta.2017.05.006 CrossRefGoogle Scholar
  110. 110.
    Jabłoński, S.J., Biernacki, P., Steinigeweg, S., Łukaszewicz, M.: Continuous mesophilic anaerobic digestion of manure and rape oilcake—experimental and modelling study. Waste Manag. 35, 105–110 (2015).  https://doi.org/10.1016/j.wasman.201 CrossRefGoogle Scholar
  111. 111.
    Primandari, S.R.P., Islam, A.K.M.A., Yaakob, Z., Chakrabarty, S.: Jatropha curcas L. biomass waste and its utilization. In: Advances in Biofuels and Bioenergy. IntechOpen, London (2018)Google Scholar
  112. 112.
    Monlau, F., Latrille, E., Costa, D., Steyer, A.C., Carrère, J.-P.: H.: Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Appl. Energy 102, 1105–1113 (2013).  https://doi.org/10.1016/j.apenergy.2012.06.042 CrossRefGoogle Scholar
  113. 113.
    Anuar, N.K., Man, H.C., Idrus, S., Daud, N.N.N.: Biochemical Methane Potential (BMP) from Anaerobic Co-digestion of Sewage Sludge and Decanter Cake, p. 012027. IOP Publishing, Bristol (2018)Google Scholar
  114. 114.
    Bateni, H., Bateni, F., Karimi, K.: Effects of oil extraction on ethanol and biogas production from Eruca sativa seed cake. Waste Biomass Valoriz. 8(6), 1897–1905 (2017).  https://doi.org/10.1007/s12649-016-9731-x CrossRefGoogle Scholar
  115. 115.
    Augusto Pazuch, F., Siqueira, J., Friedrich, L., Lenz, A.M., Camargo Nogueira, C.E., Melegari de Souza, S.N.: Co-digestion of crude glycerin associated with cattle manure in biogas production in the State of Paraná, Brazil. Acta Sci. Technol. (2017).  https://doi.org/10.4025/actascitechnol.v39i2.29167 CrossRefGoogle Scholar
  116. 116.
    Aguilar-Aguilar, F.A., Nelson, D.L., Pantoja, L.d.A., Santos, A.S.: Study of anaerobic co-digestion of crude glycerol and swine manure for the production of biogas. Rev. Virtual Quim. 9(6), 2383–2403 (2017)CrossRefGoogle Scholar
  117. 117.
    Queiroz, L.M., Nascimento, I.O.C., de Melo, S.A.B.V., Kalid, R.A.: Aerobic, anaerobic treatability and biogas production potential of a wastewater from a biodiesel industry. Waste Biomass Valorization. 7(4), 691–702 (2016).  https://doi.org/10.1007/s12649-016-9536-y CrossRefGoogle Scholar
  118. 118.
    Murphy, J.D., Drosg, B., Allen, E., Jerney, J., Xia, A., Herrmann, C.: A perspective on algal biogas. In: IEA Bioenergy. pp. 1–38 (2015)Google Scholar
  119. 119.
    Wellinger, A.: Algal biomass—does it save the world. In: Short Reflections. IEA Bioenergy Task, vol. 37, p. 13 (2009)Google Scholar
  120. 120.
    Fasaei, F., Bitter, J.H., Slegers, P.M., van Boxtel, A.J.B.: Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 31, 347–362 (2018).  https://doi.org/10.1016/j.algal.2017.11.038 CrossRefGoogle Scholar
  121. 121.
    Yue, Z., Ma, D., Wang, J., Tan, J., Peng, S.-C., Chen, T.-H.: Goethite promoted anaerobic digestion of algal biomass in continuous stirring-tank reactors. Fuel 159, 883–886 (2015).  https://doi.org/10.1016/j.fuel.2015.07.059 CrossRefGoogle Scholar
  122. 122.
    Uggetti, E., Passos, F., Solé, M., Garfí, M., Ferrer, I.: Recent achievements in the production of biogas from microalgae. Waste Biomass Valoriz. 8(1), 129–139 (2017)CrossRefGoogle Scholar
  123. 123.
    Mahdy, A., Fotidis, I.A., Mancini, E., Ballesteros, M., González-Fernández, C., Angelidaki, I.: Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresour. Technol. 225, 272–278 (2017).  https://doi.org/10.1016/j.biortech.2016.11.086 CrossRefGoogle Scholar
  124. 124.
    Thorin, E., Olsson, J., Schwede, S., Nehrenheim, E.: Co-digestion of sewage sludge and microalgae—biogas production investigations. Appl. Energy (2017).  https://doi.org/10.1016/j.apenergy.2017.08.085 CrossRefGoogle Scholar
  125. 125.
    Wang, M., Park, C.: Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenergy 80, 30–37 (2015).  https://doi.org/10.1016/j.biombioe.2015.04.028 CrossRefGoogle Scholar
  126. 126.
    Caporgno, M.P., Trobajo, R., Caiola, N., Ibáñez, C., Fabregat, A., Bengoa, C.: Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions. Renew. Energy 75, 374–380 (2015).  https://doi.org/10.1016/j.renene.2014.10.019 CrossRefGoogle Scholar
  127. 127.
    Córdova, O., Ruiz-Filippi, G., Fermoso, F.G., Chamy, R.: Influence of growth kinetics of microalgal cultures on biogas production. Renew. Energy 122, 455–459 (2018).  https://doi.org/10.1016/j.renene.2018.01.125 CrossRefGoogle Scholar
  128. 128.
    Barua, V.B., Kalamdhad, A.S.: Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio. Fuel 217, 91–97 (2018).  https://doi.org/10.1016/j.fuel.2017.12.074 CrossRefGoogle Scholar
  129. 129.
    Elbeshbishy, E., Dhar, B.R., Nakhla, G., Lee, H.-S.: A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 79, 656–668 (2017).  https://doi.org/10.1016/j.rser.2017.05.075 CrossRefGoogle Scholar
  130. 130.
    Liebetrau, J., Pfeiffer, D., Thrän, D.: Collection of methods for biogas: methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector. In: Biomass Energy Use, vol. 7. Deutsches BiomasseForschungszentrum (DBFZ), Leipzig (2016)Google Scholar
  131. 131.
    Bischofsberger, W., Dichtl, N., Rosenwinkel, K., Seyfried, C.: Anaerobtechnik. Aufl. Springer Berlin Heidelberg, Berlin (2005)CrossRefGoogle Scholar
  132. 132.
    Abbasi, T., Tauseef, S., Abbasi, S.: Anaerobic digestion for global warming control and energy generation—an overview. Renew. Sustain. Energy Rev. 16(5), 3228–3242 (2012).  https://doi.org/10.1016/j.rser.2012.02.046 CrossRefGoogle Scholar
  133. 133.
    Choong, Y.Y., Norli, I., Abdullah, A.Z., Yhaya, M.F.: Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Bioresour. Technol. 209, 369–379 (2016).  https://doi.org/10.1016/j.biortech.2016.03.028 CrossRefGoogle Scholar
  134. 134.
    Cai, Y., Hua, B., Gao, L., Hu, Y., Yuan, X., Cui, Z., Zhu, W., Wang, X.: Effects of adding trace elements on rice straw anaerobic mono-digestion: focus on changes in microbial communities using high-throughput sequencing. Bioresour. Technol. 239, 454–463 (2017).  https://doi.org/10.1016/j.biortech.2017.04.071 CrossRefGoogle Scholar
  135. 135.
    Voelklein, M.A., O’Shea, R., Jacob, A., Murphy, J.D.: Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy 121, 185–192 (2017).  https://doi.org/10.1016/j.energy.2017.01.009 CrossRefGoogle Scholar
  136. 136.
    Li, L., Li, Y., Sun, Y., Yuan, Z., Lv, P., Kang, X., Zhang, Y., Yang, G.: Influence of the feedstock ratio and organic loading rate on the co-digestion performance of Pennisetum hybrid and cow manure. Energy Fuels 32(4), 5171–5180 (2018).  https://doi.org/10.1021/acs.energyfuels.8b00015 CrossRefGoogle Scholar
  137. 137.
    Wijesinghe, D.T.N., Dassanayake, K.B., Sommer, S.G., Scales, P., Chen, D.: Biogas improvement by adding Australian zeolite during the anaerobic digestion of C:N ratio adjusted swine manure. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-018-0210-4 CrossRefGoogle Scholar
  138. 138.
    Braun, R.: Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Improvement of Crop Plants for Industrial End Uses, pp. 335–416. Springer, Dordrecht (2007)Google Scholar
  139. 139.
    Raposo, F., Banks, C., Siegert, I., Heaven, S., Borja, R.: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41(6), 1444–1450 (2006).  https://doi.org/10.1016/j.procbio.2006.01.012 CrossRefGoogle Scholar
  140. 140.
    Zhou, Y., Zhang, Z., Nakamoto, T., Li, Y., Yang, Y., Utsumi, M., Sugiura, N.: Influence of substrate-to-inoculum ratio on the batch anaerobic digestion of bean curd refuse-okara under mesophilic conditions. Biomass Bioenergy 35(7), 3251–3256 (2011).  https://doi.org/10.1016/j.biombioe.2011.04.002 CrossRefGoogle Scholar
  141. 141.
    Raposo, F., Banks, C.J., Siegert, I., Heaven, S., Borja, R.: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41(6), 1444–1450 (2006).  https://doi.org/10.1016/j.procbio.2006.01.012 CrossRefGoogle Scholar
  142. 142.
    Córdoba, V., Fernández, M., Santalla, E.: The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ. Sci. Pollut. Res. (2017).  https://doi.org/10.1007/s11356-017-0039-6 CrossRefGoogle Scholar
  143. 143.
    Nayono, S.E.: Anaerobic Digestion of Organic Solid Waste for Energy Production, vol. 46. KIT Scientific Publishing, Karlsruhe (2010)Google Scholar
  144. 144.
    Ohimain, E.I., Izah, S.C.: A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew. Sustain. Energy Rev. 70, 242–253 (2017).  https://doi.org/10.1016/j.rser.2016.11.221 CrossRefGoogle Scholar
  145. 145.
    Kaparaju, P., Buendia, I., Ellegaard, L., Angelidakia, I.: Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies. Bioresour. Technol. 99(11), 4919–4928 (2008).  https://doi.org/10.1016/j.biortech.2007.09.015 CrossRefGoogle Scholar
  146. 146.
    McMahon, K.D., Stroot, P.G., Mackie, R.I., Raskin, L.: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II: microbial population dynamics. Water Res. 35(7), 1817–1827 (2001).  https://doi.org/10.1016/S0043-1354(00)00438-3 CrossRefGoogle Scholar
  147. 147.
    Dapelo, D., Bridgeman, J.: Euler–Lagrange computational fluid dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment. Adv. Eng. Softw. (2017).  https://doi.org/10.1016/j.advengsoft.2017.08.009 CrossRefGoogle Scholar
  148. 148.
    Zhang, Y., Yu, G., Yu, L., Siddhu, M.A.H., Gao, M., Abdeltawab, A.A., Al-Deyab, S.S., Chen, X.: Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion. Bioresour. Technol. 203, 166–172 (2016).  https://doi.org/10.1016/j.biortech.2015.12.023 CrossRefGoogle Scholar
  149. 149.
    EPA: Design Information Report: Anaerobic Digester Mixing Systems, vol. 59, pp. 162–170 (1987)Google Scholar
  150. 150.
    Najafpour, G.D., Zinatizadeh, A.A.L., Mohamed, A.R., Hasnain Isa, M., Nasrollahzadeh, H.: High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochem. 41(2), 370–379 (2006).  https://doi.org/10.1016/j.procbio.2005.06.031 CrossRefGoogle Scholar
  151. 151.
    Junicke, H., van Loosdrecht, M.C.M., Kleerebezem, R.: Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities. Appl. Microbiol. Biotechnol. 100(2), 915–925 (2016).  https://doi.org/10.1007/s00253-015-6971-9 CrossRefGoogle Scholar
  152. 152.
    Leng, L., Yang, P., Singh, S., Zhuang, H., Xu, L., Chen, W.-H., Dolfing, J., Li, D., Zhang, Y., Zeng, H., Chu, W., Lee, P.-H.: A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour. Technol. 247(July 2017), 1095–1106 (2018).  https://doi.org/10.1016/j.biortech.2017.09.103 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • M. R. Atelge
    • 1
    • 2
  • David Krisa
    • 3
  • Gopalakrishnan Kumar
    • 4
    Email author
  • Cigdem Eskicioglu
    • 3
  • Dinh Duc Nguyen
    • 5
  • Soon Woong Chang
    • 5
  • A. E. Atabani
    • 1
  • Alaa H. Al-Muhtaseb
    • 6
  • S. Unalan
    • 1
  1. 1.Energy Division, Department of Mechanical Engineering, Faculty of EngineeringErciyes UniversityKayseriTurkey
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringSiirt UniversitySiirtTurkey
  3. 3.UBC Bioreactor Technology Group, School of EngineeringThe University of British ColumbiaKelownaCanada
  4. 4.Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Department of Environmental Energy EngineeringKyonggi UniversitySuwon-siRepublic of Korea
  6. 6.Department of Petroleum and Chemical Engineering, College of EngineeringSultan Qaboos UniversityMasqatOman

Personalised recommendations