Anaerobic Biohydrogen Production Using Rice Husk-Based Biologics

  • Chyi-How LayEmail author
  • Yu-Ching Hsu
  • Chiu-Yue Lin
  • Chin-Chao Chen
Original Paper


A novel biologic was developed using recycled rice husk as the support carrier for enriching anaerobic biohydrogen production to enhance the biohydrogen production efficiency. The biologic was formed using a high-activity biohydrogen producer and rice husk at various proportions. The mixed inoculum and rice husks were dried from 25 to 80 °C. The dried biologics could be successfully enriched with high hydrogen production activity. The peak biohydrogen production (200 mL/L) was obtained at the biohydrogen producer in the mixing ratio of about 12:30 g dried rice husk at 50 °C. The peak biohydrogen value was higher when compared to the value which was obtained using the suspended seed inoculums (130 mL/L). Applying the Endo nutrient formula, it was found that could increase both the biohydrogen-producing activity and potential. Furthermore, a spindle-shape (like Clostridium sp.) microorganism was observed in the rice husk pores, using the SEM (scanning electron microscope) analysis. It is suggested that the rice husk could be applied to develop biohydrogen production biologics, cost-effectively.

Graphical Abstract


Biohydrogen Biologic Anaerobic fermentation Rice husk Mixing ratio 



This work was supported by Taiwan’s Ministry of Science Technology (MOST 104-2623-E-035-005-ET, MOST 105-2221-E-035-077-MY3).


  1. 1.
    Nissilä, M.E., Lay, C.-H., Puhakka, J.A.: Dark fermentative hydrogen production from lignocellulosic hydrolyzates—a review. Biomass Bioenergy 67, 145–159 (2014)CrossRefGoogle Scholar
  2. 2.
    Argun, H., Gülizar Onaran, G.: Dark fermentative hydrogen gas production from lime treated waste paper towel hydrolysate. Waste Biomass Valoriz. 9(5), 801–810 (2018)CrossRefGoogle Scholar
  3. 3.
    Lin, C.-Y., Lay, C.-H., Sen, B., Chu, C.-Y., Kumar, G., Chen, C.-C., Chang, J.-S.: Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrogen Energy 37, 15632–15642 (2012)CrossRefGoogle Scholar
  4. 4.
    Kumar, G., Mudhoo, A., Sivagurunathan, P., Nagarajan, D., Ghimire, A., Lay, C.-H., Lin, C.-Y., Lee, D.-J., Chang, J.-S.: Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour. Technol. 219, 725–737 (2016)CrossRefGoogle Scholar
  5. 5.
    Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz. 1(1), 21–39 (2010)CrossRefGoogle Scholar
  6. 6.
    Rózsenberszki, T., Koók, L., Hutvágner, D., Nemestóthy, N., Bélafi-Bakó, K., Bakonyi, P., Kurdi, R., Sarkady, A.: Comparison of anaerobic degradation processes for bioenergy generation from liquid fraction of pressed solid waste. Waste Biomass Valoriz. 6, 465–473 (2015)CrossRefGoogle Scholar
  7. 7.
    Lorencini, P., Siqueira, M.R., Maniglia, B.B., Tapia, D.R., Maintinguer, S.I., Reginatto, V.: Biohydrogen production from liquid and solid fractions of sugarcane bagasse after optimized pretreatment with hydrochloric acid. Waste Biomass Valoriz. 7(5), 1017–1029 (2016)CrossRefGoogle Scholar
  8. 8.
    Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I.: Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energy 27, 1339–1347 (2002)CrossRefGoogle Scholar
  9. 9.
    Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34, 799–811 (2009)CrossRefGoogle Scholar
  10. 10.
    Pai, S.-L., Chong, N.-M., Chen, C.-H.: Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresour. Technol. 68, 179–185 (1999)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Tay, J.-H.: State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 22, 533–563 (2004)CrossRefGoogle Scholar
  12. 12.
    Sołowski, G., Shalaby, M.-S., Abdallah, H., Shaban, A.M., Cenian, A.: Production of hydrogen from biomass and its separation using membrane technology. Renew. Sustain. Energy Rev. 188, 3152–3167 (2017)Google Scholar
  13. 13.
    Gioannis, G.D., Muntoni, A., Polettini, A., Pomi, R., Spiga, D.: Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Manag. 68, 595–602 (2017)CrossRefGoogle Scholar
  14. 14.
    Lin, C.-N., Wu, S.-Y., Chang, J.-S.: Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. Int. J. Hydrogen Energy 31, 2200–2210 (2006)CrossRefGoogle Scholar
  15. 15.
    Lay, C.-H., Sen, B., Chen, C.-C., Wu, J.-H., Lee, S.-C., Lin, C.-Y.: Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresour. Technol. 135, 610–615 (2013)CrossRefGoogle Scholar
  16. 16.
    Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M.: Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012)CrossRefGoogle Scholar
  17. 17.
    Endo, G., Noike, T., Matsumoto, J.: Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. In: Proceedings of the Japan Society of Civil Engineers, Japan Society of Civil Engineers, vol. 325, pp. 61–68 (1982)Google Scholar
  18. 18.
    Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Standard Methods for the Examination of Water and Wastewater, 20th edn. APHA American Public Health Association, Front Cover (1998)Google Scholar
  19. 19.
    Lay, J.-J., Lee, Y.-J., Noike, T.: Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 33, 2579–2586 (1999)CrossRefGoogle Scholar
  20. 20.
    Lay, C.-H., Lin, H.-C., Sen, B., Chu, C.-Y., Lin, C.-Y.: Simultaneous hydrogen and ethanol production from sweet potato via dark fermentation. J. Clean. Prod. 27, 155–164 (2012)CrossRefGoogle Scholar
  21. 21.
    Marone, A., Massini, G., Patriarca, C., Signorini, A., Varrone, C., Izzo, G.: Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. Int. J. Hydrogen Energy 37, 5612–5622 (2012)CrossRefGoogle Scholar
  22. 22.
    Lay, C.-H., Sung, I.-Y., Kumar, G., Chu, C.-Y., Chen, C.-C., Lin, C.-Y.: Optimizing biohydrogen production from mushroom cultivation waste using anaerobic mixed cultures. Int. J. Hydrogen Energy 37, 16473–16478 (2012)CrossRefGoogle Scholar
  23. 23.
    Antonopoulou, G., Gavala, H.-N., Skiadasa, L.-V., Angelopoulos, K., Lyberatos, G.: Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour. Technol. 99, 110–119 (2008)CrossRefGoogle Scholar
  24. 24.
    Kumar, V., Kothari, R., Pathak, V.V., Tyagi, S.K.: Optimization of substrate concentration for sustainable biohydrogen production and kinetics from sugarcane molasses: experimental and economical assessment. Waste Biomass Valoriz. 9(2), 273–281 (2018)CrossRefGoogle Scholar
  25. 25.
    Lin, C.Y., Lay, C.H.: Research and development of biohydrogen production in Taiwan. In: Fang, H.H.P. (ed.) Environmental Anaerobic Technology, pp. 331–344. Imperial College Press, London (2010)CrossRefGoogle Scholar
  26. 26.
    Pan, J., Zhang, R., El-Mashad, H.-M., Sun, H., Yinga, Y.: Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrogen Energy 33, 6968–6975 (2008)CrossRefGoogle Scholar
  27. 27.
    Cui, M., Yuan, Z., Zhi, X., Shen, J.: Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int. J. Hydrogen Energy 34, 7971–7978 (2009)CrossRefGoogle Scholar
  28. 28.
    Zhang, M.-L., Fan, Y.-T., Xing, Y., Pan, C.-M., Zhang, G.-S., Lay, J.-J.: Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31, 250–254 (2007)CrossRefGoogle Scholar
  29. 29.
    Sołowski, G.: Biohydrogen production—sources and methods: a review. Int. J. Bioprocess. Biotechnol. (2018). Google Scholar
  30. 30.
    Singh, A., Sevda, S., Reesh, I.M.A., Vanbroekhoven, K., Rathore, D., Pant, D.: Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies 8, 13062–13080 (2015)CrossRefGoogle Scholar
  31. 31.
    Han, W., Ye, M., Zhua, A.-J., Zhao, H.-T., Li, Y.-F.: Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol. 191, 24–29 (2015)CrossRefGoogle Scholar
  32. 32.
    Chookaew, T., Thong, S.O., Prasertsan, P.: Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int. J. Hydrogen Energy 40, 7433–7438 (2015)CrossRefGoogle Scholar
  33. 33.
    Mohanakrishna, G., Goud, R.K., Mohan, S.V., Sarma, P.N.: Enhancing biohydrogen production through sewage supplementation of composite vegetable based market waste. Int. J. Hydrogen Energy 35, 533–541 (2010)CrossRefGoogle Scholar
  34. 34.
    Kotsopoulos, T.A., Fotidis, L.A., Tsolakis, N., Martzopoulos, G.G.: Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C). Biomass Bioenergy 33, 1168–1174 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Green Energy Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.General Education/Green Energy Development Centre/Master’s Program of Green Energy Science and TechnologyFeng Chia UniversityTaichungTaiwan, ROC
  4. 4.Department of Environmental Engineering and ScienceFeng Chia UniversityTaichungTaiwan, ROC
  5. 5.Department of Environmental Engineering and Science/Green Energy Development Centre/Master’s Program of Green Energy Science and TechnologyFeng Chia UniversityTaichungTaiwan, ROC
  6. 6.Environmental Resources Laboratory, Department of Landscape ArchitectureChung Chou University of Science and TechnologyYuanlin TownshipTaiwan, ROC

Personalised recommendations