Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 755–762 | Cite as

Enzymatic Degradation of the Rice Bran: Problem or Opportunity?

  • Evandro Pereira
  • Sandra Einloft
  • Marcus Seferin
  • Leonardo Moreira dos Santos
  • Jeane Lima
  • Rosane LigabueEmail author
Original Paper
  • 171 Downloads

Abstract

This study shows rice bran as feedstock with high potential for biodiesel production by enzyme catalysis in situ, due their unique characteristics that allow to control its composition (triglycerides and free fatty acids). Among the characteristics evaluated of rice bran (particle size, moisture and metals concentration), the particle size significantly influenced the hydrolysis of triglycerides into free fatty acids. The oil content obtained from extraction of different granulometric ranges of rice bran (dry basis, 9 h) was 43.6% (20–32 mesh), 28.2% (32–35 mesh), 25.8% (35–60 mesh) and 24.8% (60–100 mesh). The presence of trace elements Zn, Cu and Ca in larger concentration in the range of 20–32 mesh may explain the greater amount of oil in this fraction, because these metals act as inhibitors of the enzyme activity in the triglyceride degradation. Free fatty acids formation rate was around 0.73% day−1 in the degradation conditions studied (10.5% moisture and 6 weeks).

Keywords

Rice bran Lipase Enzymatic activity Triglycerides hydrolysis 

Notes

Acknowledgements

The authors would like to thank CAPES and FAPERGS for fellowships, FINEP (project 2520/2009), PUCRS and FAPERGS-PRONEX for partial financial support. IPR/PUCRS for ICP-OES analyzes.

References

  1. 1.
    Brazilian harvest: grains, ninth survey. National Supply Company-NSC. http://www.NSC.gov.br/OlalaCMS/uploads (2014). Accessed 2 May 2014
  2. 2.
    Sawant, S.B., Prabhu, A.V., Tambe, S.P., Gandhi, N.N., Joshi, J.B.: Rice bran lipase: extraction, activity, and stability. Biotechnol. Prog. 15, 1083–1089 (1999)CrossRefGoogle Scholar
  3. 3.
    Amissah, J.G.N., Ellis, W.O., Oduro, I., Manful, J.T.: Nutrient composition of bran from new rice varieties under study in Ghana. Food Control. 14, 21–24 (2003)CrossRefGoogle Scholar
  4. 4.
    Ju, Y.H., Vali, S.R.: Rice bran oil as a potential resource for biodiesel: a review. J. Sci. Ind. Res. 64, 866–882 (2005)Google Scholar
  5. 5.
    Zhou, Z., Robards, K., Helliwell, S., Blanchard, C.: Composition and functional properties of rice. Int. J. Food Sci. Technol. 37, 849–868 (2002)CrossRefGoogle Scholar
  6. 6.
    Zullaikah, S., Lai, C.C., Vali, S.R., Ju, Y.H.: A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour. Technol. 96, 1889–1896 (2005)CrossRefGoogle Scholar
  7. 7.
    Einloft, S., Magalhães, T.O., Donato, A., Dullius, J., Ligabue, R.: Biodiesel from rice bran oil: transesterification by tin compounds. Energy Fuels 22, 671–674 (2008)CrossRefGoogle Scholar
  8. 8.
    Lin, L., Ying, D., Chaitep, S., Vittayapadung, S.: Biodiesel production from crude rice bran oil and properties as fuel. Appl. Energy. 86, 681–688 (2009)CrossRefGoogle Scholar
  9. 9.
    Poppe, J.K., Fernandez-Lafuente, R., Rodrigues, R.C., Ayub, M.A.Z.: Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnol. Adv. 33, 511–525 (2015)CrossRefGoogle Scholar
  10. 10.
    Mounguengui, R.W.M., Brunschwig, C., Baréa, B., Villeneuve, P., Blin, J.: Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Prog. Energy Combust. Sci. 39, 441–456 (2013)CrossRefGoogle Scholar
  11. 11.
    Aransiola, E.F., Ojumu, T.V., Oyekola, O.O., Madzimbamuto, T.F., Ikhu-Omoregbe, D.I.O.: A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61, 276–297 (2014)CrossRefGoogle Scholar
  12. 12.
    Oliveira, M.S., Feddern, V., Kupski, L., Cipolatti, L.P., Furlong, E.B., Soares, L.A.S.: Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour. Technol. 102, 8335–8338 (2011)CrossRefGoogle Scholar
  13. 13.
    ASTM(American Society for Testing and Materials): Standard test method for particle-size analysis of soils. Designation: D422-63 (2007)Google Scholar
  14. 14.
    Vuataz, G., Meunier, V., Andrieux, J.C.: TG–DTA approach for designing reference methods for moisture content determination in food powders. Food Chem. 122, 436–442 (2010)CrossRefGoogle Scholar
  15. 15.
    Pourali, O., Asghari, F.S., Yoshida, H.: Simultaneous rice bran oil stabilization and extraction using sub-critical water medium. J. Food Eng. 95, 510–516 (2009)CrossRefGoogle Scholar
  16. 16.
    Melo, L.C.A., Silva, C.A.: Influence of digestion method and sample mass on the recovery of nutrients in organic residues. Quím. Nova 31, 556–561 (2008)CrossRefGoogle Scholar
  17. 17.
    Ouachab, N., Tsoutsos, T.: Study of the acid pretreatment and biodiesel production from olive pomace oil. J. Chem. Technol. Biotechnol. 88, 1175–1181 (2013)CrossRefGoogle Scholar
  18. 18.
    Brunschwiler, C., Heine, D., Kappeler, S., Conde-Petit, B., Nyström, L.: Direct measurement of rice bran lipase activity for inactivation kinetics and storage stability prediction. J. Cereal Sci. 58, 272–277 (2013)CrossRefGoogle Scholar
  19. 19.
    Chong, F.C., Tey, B.T., Dom, Z.M., Cheong, K.H., Satiawihardja, B., Ibrahim, M.N., Rahman, R.A., Biak, D.R.A., Ling, T.C.: Rice bran lipase catalyzed esterification of palm oil fatty acid distillate and glycerol in organic solvent. Biotechnol. Bioprocess Eng. 12, 250–256 (2007)CrossRefGoogle Scholar
  20. 20.
    Mumhi, S.K., Bhatia, N., Sekhod, B.S., Sukhija, P.S.: Inactivation of rice bran lipase with metal ions. J. Chem. Technol. Biotechnol. 57, 169–174 (1993)Google Scholar
  21. 21.
    Mendes, A.A., Oliveira, P.C., Castro, H.F.: Properties and biotechnological applications of porcine pancreatic lipase. J. Mol. Catal. B 78, 119–134 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhou, J., Chen, W.W., Jia, Z.B., Huang, G.R., Hong, Y., Tao, J.J., Luo, X.B.: Purification and characterization of lipase produced by Aspergillus oryzae CJLU-31 isolated from waste cooking oily soil. Am. J. Food Technol. 7, 596–608 (2012)CrossRefGoogle Scholar
  23. 23.
    Zheng, Y.Y., Guo, X.H., Song, N.N., Li, D.C.: Thermophilic lipase from Thermomyces lanuginosus: gene cloning, expression and characterization. J. Mol. Catal. B 69, 127–132 (2011)CrossRefGoogle Scholar
  24. 24.
    Bendini, A., Cerretani, L., Di Virgilio, F., Belloni, P., Bonoli-Carbognin, M., Lercker, G: Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Quality. 30, 424–437 (2007)CrossRefGoogle Scholar
  25. 25.
    Furlan, P.Y., Wetzel, P., Johnson, S., Wedin, J., Och, A.: Investigating the oxidation of biodiesel from used vegetable oil by FTIR spectroscopy: used vegetable oil biodiesel oxidation study by FTIR. Spectrosc. Lett. 43, 580–585 (2010)CrossRefGoogle Scholar
  26. 26.
    Pereira, E., Santos, L.M., Einloft, S., Seferin, M., Dullius, J.: Biodiesel production from high FFA degummed rice bran oil by a two-step process using ethanol/methanol and a green catalyst. Waste Biomass Valor. 6, 343–351 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Evandro Pereira
    • 1
  • Sandra Einloft
    • 1
    • 2
  • Marcus Seferin
    • 1
    • 2
  • Leonardo Moreira dos Santos
    • 1
  • Jeane Lima
    • 2
    • 3
  • Rosane Ligabue
    • 1
    • 2
    Email author
  1. 1.Graduation Program in Materials Engineering and TechnologyPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  2. 2.School of ChemistryPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Institute of Petroleum and Natural ResourcesPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations