Waste and Biomass Valorization

, Volume 9, Issue 9, pp 1485–1494 | Cite as

Optimization of Different Variable for Eco-friendly Extraction of Betalains and Phytochemicals from Beetroot Pomace

  • Rinku Kushwaha
  • Vikas KumarEmail author
  • Gitanjali Vyas
  • Jasleen Kaur
Original Paper


Beetroot pomace is majorly considered as waste from beetroot processing industry though it contains higher amount of betalains and other phytochemicals which can be utilized in medicinal and food applications. In the present study, Fourier Transform Infrared Spectroscopy analysis of pomace also confirmed the presence of the betalian and phenolics by identifying the major functional groups. Therefore, an attempt has been made to optimize an eco-friendly method for extraction of betalains and phytochemicals from beetroot pomace by considering different experimental variables such as solid-to-liquid ratio (1:15–1:45), temperature (30–70 °C), time (2.50–12.50 min) and pH (1.50–5.50) using response surface methodology. Beetroot pomace was dried, grinded and subjected for extraction of betacyanin, betaxanthin, phenolics and antioxidants using different combinations of experimental variables. A prediction model was optimized and validated to get the optimum conditions. Solid-to-liquid ratio (1:15), temperature (50.04 °C), time (10 min.) and pH (2.50) was the optimized process conditions for the extraction of betalains and other phytochemicals achieved with the best fit of desirability i.e. 0.889. So, it is concluded that beetroot pomace can be successfully utilized cost effectively rather than simply thoroughly it in the open conditions or converting it in to compost.


Beta vulgaris Beetroot pomace Extraction Betalains Phytochemicals Response surface methodology 



The authors are thankful to the Department of Food Technology & Nutrition, School of Agriculture, Lovely Professional University, Phagwara (Punjab) for providing infrastructural facility and financial support. The authors would like to acknowledge the guidance of Dr. V. K. Joshi (Retired Professor, Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Solan, India) for smooth conduction of the study.


  1. 1.
    Azeredo, H.M.: Betalains: properties, sources, applications, and stability–a review. Int. J. Food Sci. Technol. 44, 2365–2376 (2008)CrossRefGoogle Scholar
  2. 2.
    Kearsley, M.W., Katsaboxakis, K.Z.: Stability and use of natural colours in foods Red beet powder, copper chlorophyll powder and cochineal. Int. J. Food Sci. Technol. 15, 501–514 (2007)CrossRefGoogle Scholar
  3. 3.
    Maran, J.P., Sivakumar, V., Thirugnanasambandham, K., Sridhar, R.: Extraction of natural anthocyanin and colors from pulp of jamun fruit. J. Food Sci. Technol. 52, 3617–3626 (2014)Google Scholar
  4. 4.
    Vinson, J.A., Hao, Y., Su, X., Zubik, L.: Phenol antioxidant quantity and quality in foods: vegetables. J. Agric. Food. Chem. 46, 3630–3634 (1998)CrossRefGoogle Scholar
  5. 5.
    Slatnar, A., Stampar, F., Veberic, R., Jakopic, J.: HPLC-MSn Identification of betalain profile of different beetroot (Beta vulgaris L. ssp. vulgaris) parts and cultivars. J. Food Sci. 80, C1952–C1958 (2015)CrossRefGoogle Scholar
  6. 6.
    Šaponjac, V.T., Čanadanović–Brunet, J., Ćetković, G., Jakišić, M., Djilas, S., Vulić, J., Stajčić, S.: Encapsulation of beetroot pomace extract: RSM optimization, storage and gastrointestinal stability. Molecules. 21, 584 (2016)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Xuefeng, S., Yong, C.: Effect of pH, temperature and iron on the stability of anthocyanins from black–skinned peanuts (Arachis hypogaea L.). Afr. J. Agric. Res. 8, 2044–2047 (2013)CrossRefGoogle Scholar
  8. 8.
    Elbandy, M.A., Abdelfadeil, M.G.: Stability of betalain pigments from red beetroot (Beta vulgaris). Egypt. J. Food Sci. 36, 49–60 (2008)Google Scholar
  9. 9.
    Gengatharan, A., Dykes, G.A., Choo, W.S.: Betalains: natural plant pigments with potential application in functional foods. LWT Food Sci. Technol. 64, 645–649 (2015)CrossRefGoogle Scholar
  10. 10.
    Chalermchat, Y., Fincan, M., Dejmek, P.: Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment: mathematical modelling of mass transfer. J. Food Eng. 64(2), 229–236 (2004)CrossRefGoogle Scholar
  11. 11.
    Fincan, M., De Vito, F., Dejmek, P: Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. J. Food Eng. 64(3), 381–388 (2004)CrossRefGoogle Scholar
  12. 12.
    Sanchez–Gonzalez, N., Jaime–Fonseca, M.R., Martin–Martinez, E.S., Zepeda, L.G.: Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. J. Agric. Food Chem. 61, 11995–12004 (2013)CrossRefGoogle Scholar
  13. 13.
    Neagu, C., Barbu, V.: Principal component analysis of the factors involved in the extraction of beetroot betalains. J. Agroaliment. Proc. Technol. 20(4), 311–318 (2014)Google Scholar
  14. 14.
    Cardoso-Ugarte, G.A., Sosa-Morales, M.E., Ballard, T., Liceaga, A., San Martín-González, M.F.: Microwave-assisted extraction of betalains from red beet (Beta vulgaris). Food Sci. Technol.-LEB. 59(1), 276–282 (2014)CrossRefGoogle Scholar
  15. 15.
    Maran, J.P., Priya, B.: Multivariate statistical analysis and optimization of ultrasound-assisted extraction of natural pigments from waste red beet stalks. J. Food Sci. Technol. 53(1), 792–799 (2016)CrossRefGoogle Scholar
  16. 16.
    Lenucci, M.S., Caroli, M.D., Marrese, P.P., Iurlaro, A., Rescio, L., Böhm, V., Dalessandro, G., Piro, G.: Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chem. 170, 193–202 (2015)CrossRefGoogle Scholar
  17. 17.
    Kumar, S.S., Manoj, P., Giridhar, P.: A method for red–violet pigments extraction from fruits of Malabar spinach (Basella rubra) with enhanced antioxidant potential under fermentation. J. Food Sci. Technol. 52, 3037–3043 (2014)CrossRefGoogle Scholar
  18. 18.
    Mojzer, E.B., Hrnčič, M.K., Škerget, M., Knez, Ž., Bren, U.: Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 21, 901 (2016)CrossRefGoogle Scholar
  19. 19.
    Stintzing, F.C., Herbach, K.M., Mosshammer, M.R., Carle, R., Yi, W., Sellappan, S., Akoh, C.C., Bunch, R., Felker, P.: Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) Clones. J. Agric. Food Chem. 53, 442–451 (2005)CrossRefGoogle Scholar
  20. 20.
    Ravichandran, K., Saw, N.M.M.T., Mohdaly, A.A., Gabr, A.M., Kastell, A., Riedel, H., Cai, Z., Knorr, D., Smetanska, I.: Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 50, 670–675 (2013)CrossRefGoogle Scholar
  21. 21.
    Sadasivum, S., Manickam. A.: Biochemical Method for Agricultural Sciences. Wiley, New Dehli (1992)Google Scholar
  22. 22.
    Brand-Williams, W., Cuvelier, M., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  23. 23.
    Stuart, B.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Chichester (2004)CrossRefGoogle Scholar
  24. 24.
    Kumar, S.N.A., Ritesh, S.K., Sharmila, G., Muthukumaran, C.: Extraction optimization and characterization of water soluble red purple pigment from floral bracts of Bougainvillea glabra. Arabian J. Chem. (2013). doi: 10.1016/j.arabjc.2013.07.047 Google Scholar
  25. 25.
    Maran, J.P., Sivakumar, V., Thirugnanasambandham, K., Sridhar, R.: Extraction, multi-response analysis, and optimization of biologically active phenolic compounds from the pulp of Indian jamun fruit. Food Sci. Biotechnol. 23, 9–14 (2013)CrossRefGoogle Scholar
  26. 26.
    Delgado-Vargas, F., Jiménez, A.R., Paredes-López, O.: Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 40(3), 173–289 (2000)CrossRefGoogle Scholar
  27. 27.
    Slavov, A., Karagyozov, V., Denev, P., Kratchanova, M., Kratchanov, C.: Antioxidant activity of red beet juices obtained after microwave and thermal pretreatments. Czech J. Food Sci. 31(2), 139–147 (2013)CrossRefGoogle Scholar
  28. 28.
    Wootton-Beard, P.C., Ryan, L.: A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J. Funct. Foods 3(4), 329–334 (2011)CrossRefGoogle Scholar
  29. 29.
    Candrawinata, V.I., Golding, J.B., Roach, P.D., Stathopoulos, C.E.: Total phenolic content and antioxidant activity of apple pomace aqueous extract : effect of time, temperature and water to pomace ratio. Int. Food Res. J. 21(6), 2337–2344 (2014)Google Scholar
  30. 30.
    Tan, M.C., Tan, C.P., Ho, C.W.: Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int. Food Res. J. 20(6), 3117–3123 (2013)Google Scholar
  31. 31.
    Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X.: Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 106, 804–810 (2008)CrossRefGoogle Scholar
  32. 32.
    Dai, J., Mumper, R.J.: Plant Phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 15, 7313–7352 (2010)CrossRefGoogle Scholar
  33. 33.
    Silva, E., Rogez, H., Larondelle, Y.: Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 55, 381–387 (2007)CrossRefGoogle Scholar
  34. 34.
    Naczk, M., Shahidi, F.: Extraction and analysis of phenolics in food. J. Chromatogr. A 1054, 95–111 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Biotechnology and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraIndia
  3. 3.Department of Basic SciencesDr. Y.S. Parmar University of Horticulture and ForestryNauniIndia

Personalised recommendations