Waste and Biomass Valorization

, Volume 8, Issue 5, pp 1771–1780 | Cite as

Changes in Wastewater Sludge Characteristics Submitted to Thermal Drying, E-beam Irradiation or Anaerobic Digestion

  • L. Lemée
  • M. Collard
  • N. Karpel Vel Leitner
  • B. Teychené
Original Paper
  • 81 Downloads

Abstract

Changes in organic matter (OM) characteristics of wastewater sludge (WWS) submitted to three handling processes were monitored. Thermal drying, electron beam (e-beam) irradiation and anaerobic digestion were compared. The knowledge of the characteristics of the final residual biomass is essential to improve its valorization. The OM of WWS was investigated at the global scale using elemental analysis, infrared spectroscopy, thermogravimetric analysis and chemical fractionation. Double-shot thermochemolysis coupled with gas chromatography and mass spectrometry (GCMS) was used to compare the diversity and distribution of the molecular contents. A strong influence of thermal drying on lipids and humic-like substances contents was observed through fractionation, which traduced a weakening of the OM. The anaerobic digestion induced an increase in lipids for the hydrolysis phase followed by a decrease which correlates with the volume reduction of sludge by about 30%. E-beam induced change in the distribution of the different pools of organic matter depending on the irradiation dose. At the molecular scale, fatty acids, steroids and aromatics were the main thermochemolysis products in all the samples. The thermal drying induced an increase in fatty acids and in steroids, probably released from the refractory OM. Anaerobic digestion modified exclusively the amount and distribution of fatty acids while e-beam induced a decrease in all the identified compounds including aromatics. Finally double-shot thermochemolysis-GCMS demonstrated that the consequences of the handling process on the molecular contents of WWS should be taken into account for the choice of the final valorization pathway.

Graphical Abstract

Studied handling processes

Keywords

Wastewater sludge Thermal drying E-beam Anaerobic digestion Double-shot pyrolysis 

References

  1. 1.
    Uggetti, E., Ferrer, I., Llorens, E., García, J.: Sludge treatment wetlands: a review on the state of the art. Bioresour. Technol. 101, 2905–2912 (2010)CrossRefGoogle Scholar
  2. 2.
    Neyens, E., Baeyens, J., Dewil, R., Deheyder, B.: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 106B, 83–92 (2004)CrossRefGoogle Scholar
  3. 3.
    Urbain, V., Block, J.C., Manem, J.: Bioflocculation in activated-sludge—an analytic approach. Water Res. 27(5), 829–838 (1993)CrossRefGoogle Scholar
  4. 4.
    Flemming, H.-C., Wingender, J.: Relevance of microbial extracellular polymeric substances (EPSs). Part I: Structural and ecological aspects. Water Sci. Technol. 43(6), 1–8 (2001)Google Scholar
  5. 5.
    Eriksson, L., Alm, B.: Study of flocculation mechanisms by observing effects of complexing agent on activated sludge properties. Water Sci. Technol. 24(7), 21–28 (1991)Google Scholar
  6. 6.
    Kang, S.M., Kishimoto, M., Shioya, S., Yoshida, T., Suga, K.I.H., Taguchi, H.: Dewatering characteristics of activated sludges and effect of extracellular polymer. J. Ferment. Bioeng. 68(2),117–122, (1989)CrossRefGoogle Scholar
  7. 7.
    Dignac, M.F., Urbain, V., Ryabacki, D., Bruchet, A., Snidaro, D., Scribe, P.: Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci. Technol. 38(8–9), 45–53 (1998)CrossRefGoogle Scholar
  8. 8.
    Neyens, E.: The Development of Advanced Techniques for Reducing Sludge Quantities and Improving Sludge Dewaterability. PhD Thesis, Katholieke Universiteit Leuven, 230 (2003)Google Scholar
  9. 9.
    Yin, G., Huang Liao, P., Lo, K.V.: An ozone/hydrogen peroxide/microwave-enhanced advanced oxidation process for sewage sludge treatment. J. Environ. Sci. Health Part A 42, 8 (2007)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Wang, J.: Application of radiation technology to sewage sludge processing: a review. J. Hazard. Mater. 143(1–2), 2–7 (2007)CrossRefGoogle Scholar
  11. 11.
    Borrely, S.I., Cruz, A.C., Del Mastro, N.L., Sampa M.H.O., Somessari, E.S.: Radiation processing of sewage and sludge. A review. Prog. Nucl. Energy. 33(1–2), 3–21 (1998)CrossRefGoogle Scholar
  12. 12.
    Changqing, C., Min, W.: Treatment of municipal sewage sludge by electron beam irradiation. Nucl. Sci. Techn. 23, 29–33, (2012)Google Scholar
  13. 13.
    Ernst and Young, Etude du marché de la méthanisation et de la valorisation du biogaz. Ademe and GrDF, France (2008)Google Scholar
  14. 14.
    Arnaiz, C., Guitierrez, J.C., Lebrato, J.: Biomass stabilization in the anaerobic digestion of wastewater sludges. Bioresour. Technol. 97(10), 1179–1184 (2006)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Li, X., Kang, X.: Effect of volume ratio on anaerobic co-digestion of thermal hydrolysis of food waste with activated sludge. CESE-2014—Chall. Environ. Sci. Eng. Ser. Conf. 102, 154–158 (2015)Google Scholar
  16. 16.
    Li, X., Dai, X., Takahashi, J., Li, N., Jin, J., Dai, L., Dong, B.: New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresour. Technol. 159, 412–420 (2014)CrossRefGoogle Scholar
  17. 17.
    Zonta, Ž., Alves, M.M., Flotats, X., Palatsi, J.: Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process. Water Res. 47(3), 1369-1380 (2013)CrossRefGoogle Scholar
  18. 18.
    Kim, M., Ahn, Y.-H., Speece, R.: Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. 36(17), 4369-4385 (2002)CrossRefGoogle Scholar
  19. 19.
    Carrère, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenès, J.P., Steyer, J.P., Ferrer, I.: Pretreatment methods to improve sludge anaerobic degradability: a review. J. Hazard. Mater. 183(1–3), 1–15 (2010)CrossRefGoogle Scholar
  20. 20.
    McLeod, J.D., Othman, M.Z., Beale, D.J., Joshi, D.: The use of laboratory scale reactors to predict sensitivity to changes in operating conditions for full-scale anaerobic digestion treating municipal sewage sludge. Bioresour. Technol. 189, 384–390 (2015)CrossRefGoogle Scholar
  21. 21.
    Maspolim, Y., Zhou, Y., Guo, C., Xiao, K., Ng, W.J.: Comparison of single-stage and two-phase anaerobic sludge digestion systems—performance and microbial community dynamics. Wastewater-Energy Nexus Sustain. Wastewater Reclam. 140, 54–62 (2015)Google Scholar
  22. 22.
    Collard, M., Teychené, B., Lemée, L.: Improved quantitative analysis of molecular constituents of wastewater sludge pellets using double-shot thermochemolysis-GCMS. J. Anal. Appl. Pyrolysis. 114, 265–272 (2015)CrossRefGoogle Scholar
  23. 23.
    Tandy, S., Healey, J.R., Nason, M.A., Williamson, J.C., Jones, D.L., Thain, S.C.: FT-IR as an alternative method for measuring chemical properties during composting. Bioresour. Technol. 101, 5431–5436 (2010)CrossRefGoogle Scholar
  24. 24.
    Smidt, E., Meissl, K.: The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268–276 (2007)CrossRefGoogle Scholar
  25. 25.
    Grube, M., Lin, J.G., Lee, P.H., Kokorevicha, S.: Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma. 130, 324–333 (2006)CrossRefGoogle Scholar
  26. 26.
    Réveillé, V., Mansuy, L., Jardé, É., Garnier-Sillam, É.: Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Org. Geochem. 34, 615–627 (2003)CrossRefGoogle Scholar
  27. 27.
    Otero, M., Calvo, L.F., Estrada, B., García, A.I., Morán, A.: Thermogravimetry as a technique for establishing the stabilization progress of sludge from wastewater treatment plants. Thermochim. Acta 389, 121–132 (2002)CrossRefGoogle Scholar
  28. 28.
    Calderoni, G., Schnitzer, M.: Effects of age on the chemical structure of paleosol humic acids and fulvic acids. Geochim. Cosmochim. Acta 48, 2045–2051 (1984)CrossRefGoogle Scholar
  29. 29.
    Som, M.-P., Lemée, L., Amblès, A.: Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresour. Technol. 100, 4404–4416 (2009)CrossRefGoogle Scholar
  30. 30.
    Gobé, V., Lemée, L., Amblès, A.: Structure elucidation of soil macromolecular lipids by preparative pyrolysis and thermochemolysis. Org. Geochem. 31, 409–419 (2000)CrossRefGoogle Scholar
  31. 31.
    Ambles, A., Lemee, L., Jambu, P., Mayoungou-Vembet, P.: Equilibrium between free and bound lipids in a rendzina soil in natural conditions and with laboratory disturbances. Agrochimica. 41, 196–208 (1997)Google Scholar
  32. 32.
    Guignard, C., Lemée, L., Amblès, A.: Lipid constituents of peat humic acids and humin. Distinction from directly extractable bitumen components using TMAH and TEAAc thermochemolysis. Org. Geochem. 36, 287–297 (2005)CrossRefGoogle Scholar
  33. 33.
    Meng, M., Pellizzari, F., Boukari, S.O.B., Vel Leitner, N.K., Teychene, B.: Impact of e-beam irradiation of municipal secondary effluent on MF and RO membranes performances. J. Membr. Sci. 471, 1–8 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • L. Lemée
    • 1
  • M. Collard
    • 1
  • N. Karpel Vel Leitner
    • 1
  • B. Teychené
    • 1
  1. 1.Université de Poitiers, CNRS UMR 7285 (IC2MP)Poitiers Cedex 9France

Personalised recommendations