Waste and Biomass Valorization

, Volume 9, Issue 8, pp 1331–1337 | Cite as

Recovery of Energy from Orange Peels Through Anaerobic Digestion and Pyrolysis Processes after d-Limonene Extraction

  • Viviana Negro
  • Bernardo Ruggeri
  • Debora FinoEmail author
Original Paper


Currently, the citrus processing industry generates a voluminous waste stream in regions characterized by an important citrus production. This solid waste, mainly constituted by orange peel waste (OPW), represents more than half of the raw material, and it could be exploited for the production of bio-based products and bio-fuels, according to the waste hierarchy. d-limonene, the main component of citrus essential oils, is a high-added value molecule, which can be applied in several fields, ranging from cosmetics to the food industry. Because of the high moisture content in OPW (about 80% w/w), anaerobic digestion (AD) can be considered a suitable technique for waste valorization. However, this process is challenging, due to the potential toxicity of d-limonene on fermentative bacteria. For this reason, it is necessary to remove this high-added value compound in advance. After the recovery of d-limonene via solvent extraction, the porous residual matrix, posterior to exposure to the atmosphere for some days at room temperature, releases the moisture content, thus making pyrolysis a valid alternative for the recovery of energy.


Organic waste d-limonene Anaerobic digestion Pyrolysis Biofuels 


  1. 1.
    Marín, F.R., Soler-Rivas, C., Benavente-García, O., Castillo, J., Pérez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100, 736–741 (2007)CrossRefGoogle Scholar
  2. 2.
    Wilkins, M.R., Widmer, W.W., Grohmann, K.: Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem. 42, 1614–1619 (2007)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    FAO: Food and Agriculture Organization of the United Nations,
  5. 5.
    Mamma, D., Kourtoglou, E., Christakopoulos, P.: Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol. 99, 2373–2383 (2008)CrossRefGoogle Scholar
  6. 6.
    EC: Landfill waste—Environment—European Commission,
  7. 7.
    Mamma, D., Christakopoulos, P.: Biotransformation of citrus by-products into value added products. Waste Biomass Valoriz. 5, 529–549 (2014)CrossRefGoogle Scholar
  8. 8.
    Ruiz, B., Flotats, X.: Citrus essential oils and their influence on the anaerobic digestion process: An overview. Waste Manag. 34, 2063–2079 (2014)CrossRefGoogle Scholar
  9. 9.
    Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., Pérez-Álvarez, J.: Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control. 19, 1130–1138 (2008)CrossRefGoogle Scholar
  10. 10.
    Martín, M.A., Siles, J.A., Chica, A.F., Martín, A.: Biomethanization of orange peel waste. Bioresour. Technol. 101, 8993–8999 (2010)CrossRefGoogle Scholar
  11. 11.
    Negro, V., Mancini, G., Ruggeri, B., Fino, D.: Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization. Bioresour. Technol. 214, 806–815 (2016)CrossRefGoogle Scholar
  12. 12.
    Wikandari, R., Millati, R., Cahyanto, M.N., Taherzadeh, M.J.: Biogas production from citrus waste by membrane bioreactor. Membranes (Basel). 4, 596–607 (2014)CrossRefGoogle Scholar
  13. 13.
    Atti-Santos, A.C., Rossato, M., Serafini, L.A., Cassel, E., Moyna, P.: Extraction of essential oils from lime (Citrus latifolia tanaka) by hydrodistillation and supercritical carbon dioxide. Braz Arch. Biol. Technol. 48, 155–160 (2005)CrossRefGoogle Scholar
  14. 14.
    Kim, Y.-M., Lee, H.W., Kim, S., Watanabe, C., Park, Y.-K.: Non-isothermal pyrolysis of Citrus unshiu peel. BioEnergy Res. 8, 431–439 (2014)CrossRefGoogle Scholar
  15. 15.
    Miranda, R., Bustos-Martinez, D., Blanco, C.S., Villarreal, M.H.G., Cantú, M.E.R: Pyrolysis of sweet orange (Citrus sinensis) dry peel. J. Anal. Appl. Pyrolysis. 86, 245–251 (2009)CrossRefGoogle Scholar
  16. 16.
    Volpe, M., Panno, D., Volpe, R., Messineo, A.: Upgrade of citrus waste as a biofuel via slow pyrolysis. J. Anal. Appl. Pyrolysis. 115, 66–76 (2015)CrossRefGoogle Scholar
  17. 17.
    Di Blasi, C., Branca, C., Galgano, A., Gallo, B.: Role of pretreatments in the thermal runaway of hazelnut shell pyrolysis. Energy Fuels. 29, 2514–2526 (2015)CrossRefGoogle Scholar
  18. 18.
    Ruggeri, B., Tommasi, T.: Efficiency and efficacy of pre-treatment and bioreaction for bio-H 2 energy production from organic waste. Int. J. Hydrogen Energy. 37, 6491–6502 (2012)CrossRefGoogle Scholar
  19. 19.
    APHA.: Standard Methods for the Examination of Water and Wastewater, APHA, Washington, DC (2005)Google Scholar
  20. 20.
    Negro, V., Ruggeri, B., Mancini, G., Fino, D.: Recovery of D-limonene through moderate temperature extraction and pyrolytic products from orange peels. J. Chem. Technol. Biotechnol. (2016)Google Scholar
  21. 21.
    Grohmann, K., Cameron, R.G., Buslig, B.S.: Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour. Technol. 54, 129–141 (1995)CrossRefGoogle Scholar
  22. 22.
    Wang, L., Weller, C.L.: Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006)CrossRefGoogle Scholar
  23. 23.
    Ruggeri, B., Bernardi, M., Tommasi, T.: On the pre-treatment of municipal organic waste towards fuel production: A review. Int. J. Environ. Pollut. 49, 226 (2012)CrossRefGoogle Scholar
  24. 24.
    Lopresto, C.G., Petrillo, F., Casazza, A.A., Aliakbarian, B., Perego, P., Calabrò, V.: A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Sep. Purif. Technol. 137, 13–20 (2014)CrossRefGoogle Scholar
  25. 25.
    Wikandari, R., Nguyen, H., Millati, R., Niklasson, C., Taherzadeh, M.J.: Improvement of biogas production from orange peel waste by leaching of limonene. Biomed. Res. Int. (2015). doi: 10.1155/2015/494182 Google Scholar
  26. 26.
    Ndayishimiye, J., Getachew, A.T., Chun, B.S.: Comparison of characteristics of oils extracted from a mixture of citrus seeds and peels using hexane and supercritical carbon dioxide. Waste Biomass Valoriz. (2016). doi:  10.1007/s12649-016-9697-8
  27. 27.
    Mamidipally, P.K., Liu, S.X.: First approach on rice bran oil extraction using limonene. Eur. J. Lipid Sci. Technol. 106, 122–125 (2004)CrossRefGoogle Scholar
  28. 28.
    Starmans, D.A.J., Nijhuis, H.H.: Extraction of secondary metabolites from plant material: A review. Trends Food Sci. Technol. 7, 191–197 (1996)CrossRefGoogle Scholar
  29. 29.
    Forgács, G., Pourbafrani, M., Niklasson, C., Taherzadeh, M.J., Hováth, I.S.: Methane production from citrus wastes: process development and cost estimation. J. Chem. Technol. Biotechnol. 87, 250–255 (2012)CrossRefGoogle Scholar
  30. 30.
    Serrano, A., Siles López, J.A., Chica, A.F., Martín, M.A., Karouach, F., Mesfioui, A., El Bari, H.: Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environ. Technol. 35, 898–906Google Scholar
  31. 31.
    Martín, M.A., Fernández, R., Serrano, A., Siles, J.A.: Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Manag. 33, 1633–1639 (2013)CrossRefGoogle Scholar
  32. 32.
    Basu, P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Elsevier, London (2013)Google Scholar
  33. 33.
    Waheed, Q.M.K., Williams, P.T.: Hydrogen production from high temperature pyrolysis/steam reforming of waste biomass: Rice husk, sugar cane bagasse, and wheat straw. Energy Fuels. 27, 6695–6704 (2013)CrossRefGoogle Scholar
  34. 34.
    Camacho, Y.S., Bensaid, S., Ruggeri, B., Restuccia, L., Ferro, G., Mancini, G., Fino, D.: Valorisation of by-Products/Waste of Agro-Food Industry by the Pyrolysis Process. J. Adv. Catal. Sci. Technol. 3, 1–11 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly

Personalised recommendations