Ethanol Production from Water Hyacinth (Eichhornia crassipes) Using Various Types of Enhancers Based on the Consumable Sugars

  • Shahabaldin Rezania
  • Mohd Fadhil Md Din
  • Shazwin Mat Taib
  • Shaza Eva Mohamad
  • Farrah Aini Dahalan
  • Hesam Kamyab
  • Negisa Darajeh
  • Shirin Shafiei Ebrahimi
Original Paper


Ethanol production from cellulosic biomass could effectively increase using enhancers. In this study, five types of different enhancers: fermented malt extract (FME), fermented barley extract (FBE), Saccharomyces cerevisiae (SC), horse dung (HD) and mixture of all enhancers (Mix) were used in order to evaluate the sugar and ethanol production from water hyacinth. Acid pretreatment (H2SO4) was used in order to enhance digestibility for conversion of water hyacinth into ethanol. To observe the efficiency of pretreatment SEM and FTIR was used to observe the structural changes of water hyacinth before and after pretreatment. The sugar consumption rate was in order of MIX, SC, HD, FME and FBE during 60 h fermentation time, respectively. The highest ethanol produced by MIX with 5.1 ± 1.2 g/L with 60% sugar consumption, 0.085 gp/L/h ethanol volumetric productivity, 0.42 gp/gs ethanol yield and 82% theoretical yield in 60 h of fermentation. Ethanol production followed up by 3.4 ± 0.8, 3.2 ± 0.9, 1.5 ± 0.4 and 1.1 ± 0.5 g/L using SC, HD, FME and FBE, respectively. The results shows that ethanol production rate is correlated to sugar consumption during fermentation.


Ethanol production Enhancer Fermentation Reducing sugars Water hyacinth 



The authors would like to acknowledge the government research grant CLMV (R. J130000.7817.4L188) as well as the KTP-RMC grant (R.J130000.7817.4L516).. In addition, the first author is a researcher of Universiti Teknologi Malaysia (UTM) under the post-doctoral fellowship scheme (PDRU grant) for the project: “Conversion of various types of lignocellulosic compounds to bioenergy” (Vot No. Q.J130000.21A2.03E42).


  1. 1.
    Jambo, S.A., Abdulla, R., Azhar, S.H.M., Marbawi, H., Gansau, J.A., Ravindra, P: A review on third generation bioethanol feedstock. Renew. Sustain. Energy Rev. 65, 756–769 (2016)CrossRefGoogle Scholar
  2. 2.
    DashtArzhandi, M. R., Ismail, A.F., Matsuura, T., Ng, B.C., Abdullah, M.S.: Fabrication and characterization of porous polyetherimide/montmorillonite hollow fiber mixed matrix membranes for CO 2 absorption via membrane contactor. Chem. Eng. J. 269, 51–59 (2015)CrossRefGoogle Scholar
  3. 3.
    Tye, Y.Y., Lee, K.T., Abdullah, W.N.W., Leh, C.P. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Rev. 60, 155–172 (2016)CrossRefGoogle Scholar
  4. 4.
    Rezania, S., Ponraj, M., Din, M.F.M., Songip, A.R., Sairan, F.M., Chelliapan, S.: The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew. Sustain. Energy Rev. 41, 943–954 (2015)CrossRefGoogle Scholar
  5. 5.
    Singh, A., Bishnoi, N.R.: Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Ind. Crops Prod. 37, 334–341 (2012)CrossRefGoogle Scholar
  6. 6.
    Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S.E., Din, M.F.M., Taib, S.M., Sabbagh, F., Sairan, F.M.: Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J. Environ. Manag. 163, 125–133 (2015)CrossRefGoogle Scholar
  7. 7.
    Rezania, S., Din, M.F.M., Kamaruddin, S.F., Taib, S.M., Singh, L., Yong, E.L., Dahalan, F.A.: Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy. 111, 768–773 (2016)CrossRefGoogle Scholar
  8. 8.
    Rezania, S., Din, M.F.M., Mohamad, S.E., Sohaili, J., Taib, S.M., Yusof, M.B.M., et al.: Review on pretreatment methods and ethanol production from cellulosic water hyacinth. BioResources. 12(1), 2108–2124 (2017)Google Scholar
  9. 9.
    Kumar, P., Barret, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009)CrossRefGoogle Scholar
  10. 10.
    Harun, M.Y., Dayang, A.B., Zainal, Z., Yunus, R.: Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour. Technol. 102(8), 5193–5199 (2011)CrossRefGoogle Scholar
  11. 11.
    Arenas-Cárdenas, P., López-López, A., Moeller-Chávez, G.E., León-Becerril, E.: Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valoriz. 8(1), 161–181 (2017)CrossRefGoogle Scholar
  12. 12.
    Uday, U.S.P., Choudhury, P., Bandyopadhyay, T.K., Bhunia, B.: Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82, 1041–1054 (2016)CrossRefGoogle Scholar
  13. 13.
    Nigam, J.N.: Bioconversion of water hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97(2), 107–116 (2002)CrossRefGoogle Scholar
  14. 14.
    Abdel-Fattah, A.F., Abdel-Naby, M.A.: Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydr. Polym. 87(3), 2109–2113 (2012)CrossRefGoogle Scholar
  15. 15.
    Karimi, K., Taherzadeh, M.J.: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour. Technol. 200, 1008–1018 (2016)CrossRefGoogle Scholar
  16. 16.
    Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52:858–875 (2011)CrossRefGoogle Scholar
  17. 17.
    Das, S.P., Ravindran, R., Ghosh, A., Deka, D., Das, D., Jawed, M., et al.: Efficient pretreatment for bioethanol production from water hyacinth (Eichhornia crassipes) involving naturally isolated and recombinant enzymes and its recovery. Environ. Progr. Sustain. Energy. 33(4), 1396–1404 (2014)Google Scholar
  18. 18.
    Cheng, Y.S., Chen, K.Y., Chou, T.H.: Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production. Bioresour. Technol. 176, 267–272 (2015)CrossRefGoogle Scholar
  19. 19.
    Furuta, Y., Maruoka, N., Nakamura, A., Omori, T., Sonomoto, K.: Utilization of fermented barley extract obtained from a by-product of barley shochu for nisin production. J. Biosci. Bioeng. 106 (4), 393–397 (2008)CrossRefGoogle Scholar
  20. 20.
    Izmirlioglu, G., Demirci, A.: Enhanced bio-ethanol production from industrial potato waste: by statistical medium optimization. Int. J. Mol. Sci. 16(10), 24490–24505 (2015)CrossRefGoogle Scholar
  21. 21.
    Kusch, S., Oechsner, H., Jungbluth, T.: Biogas production with horse dung in solid-phase digestion systems. Bioresour. Technol. 99(5), 1280–1292 (2008)CrossRefGoogle Scholar
  22. 22.
    Vijayaraghavan, P., Vincent, S.P., Dhillon, G. S.: Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18. Waste Manag. 48, 513–520 (2016)CrossRefGoogle Scholar
  23. 23.
    Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonello, P., Torre, P., Cherchi, F: Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass. Bioenerg. 46, 25–35 (2012)CrossRefGoogle Scholar
  24. 24.
    Ang, S.K., Adibah, A., Abd-Aziz, S., Madihah, M.S.: Potential uses of xylanase-rich lignocellulolytic enzymes cocktail for oil palm trunk (OPT) degradation and lignocellulosic ethanol production. Energy Fuels. 29(8), 5103–5116 (2015)CrossRefGoogle Scholar
  25. 25.
    Sundari, M.T., Ramesh, A.: Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth: Eichhornia crassipes. Carbohydr. Polym. 87(2), 1701–1705 (2012)CrossRefGoogle Scholar
  26. 26.
    Guragain, Y.N., De Coninck, J., Husson, F., Durand, A., Rakshit, S.K.: Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresour. Technol. 102(6), 4416–4424 (2011)CrossRefGoogle Scholar
  27. 27.
    Blasi, C.D., Signorelli, C., Russo, C.D., Rea, C.: Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 38(6), 2216–2224 (1999)CrossRefGoogle Scholar
  28. 28.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  29. 29.
    Das, A., Ghosh, P., Paul, T., Ghosh, U., Pati, B.R., Mondal, K.C.: Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3 Biotech. 6, 70 (2016). doi: 10.1007/s13205-016-0385-y CrossRefGoogle Scholar
  30. 30.
    Manivannan, A., Narendhirakannan, R.T.: Bioethanol production from aquatic weed water hyacinth (Eichhornia crassipes) by yeast fermentation. Waste Biomass. Valoriz. 6(2), 209–216 (2015)CrossRefGoogle Scholar
  31. 31.
    Poletto, M., Pistor, V., Zattera, A.J.: Structural characteristics and thermal properties of native cellulose. In: Van de Ven, T., Gdbout, L. (eds.) Cellulose-fundamental aspects, pp. 45–68. InTech, Chennai (2013)Google Scholar
  32. 32.
    Das, S., Bhattacharya, A., Haldar, S., Ganguly, A., Gu, S., Ting, Y.P., Chatterjee, P.K.: Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17–28 (2015)Google Scholar
  33. 33.
    Salim, M.A.: The Effect of pH on simultaneous saccharification and fermentation process of water hyacinth (Eichhornia crassipes (Mart.) Solms.) using Trichoderma harzianum and Saccharomyces cerevisia. Int. J. Eng. Res. Dev. 6(8), 53–57 (2013)Google Scholar
  34. 34.
    Singh, A., Bishnoi, N.R. Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Ind. Crops Prod. 44, 283–289 (2013)CrossRefGoogle Scholar
  35. 35.
    Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Kongpanpee, T., Prabkate, P., Prachayasittikul, V.: Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J. 6, 167–176 (2007)Google Scholar
  36. 36.
    Eshtiaghi, M.N., Yoswathana, N., Kuldiloke, J., Ebadi, A.G.: Preliminary study for bioconversion of water hyacinth (Eichhornia crassipes) to bioethanol. Afr. J. Biotechnol. 11(21), 4921–4928 (2012)CrossRefGoogle Scholar
  37. 37.
    Chandel, A.K., Kapoor, R.K., Singh, A., Kuhad, R.C.: Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98(10), 1947–1950 (2007)CrossRefGoogle Scholar
  38. 38.
    Cheng, J., Wang, X., Huang, R., Liu, M., Yu, C., Cen, K.: Producing ethanol from water hyacinth through simultaneous saccharification and fermentation with acclimatized yeasts. BioResources. 9(4), 7666–7680 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Shahabaldin Rezania
    • 1
    • 2
  • Mohd Fadhil Md Din
    • 1
    • 2
  • Shazwin Mat Taib
    • 2
  • Shaza Eva Mohamad
    • 3
  • Farrah Aini Dahalan
    • 4
  • Hesam Kamyab
    • 1
    • 2
  • Negisa Darajeh
    • 5
  • Shirin Shafiei Ebrahimi
    • 6
  1. 1.Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Environmental SustainabilityUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Department of Environmental Engineering, Faculty of Civil EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  3. 3.Malaysia Japan International Institute of Technology, UTMKuala LumpurMalaysia
  4. 4.Water Research Group, The School of Environmental EngineeringUniversiti Malaysia Perlis (UniMAP)ArauMalaysia
  5. 5.Department of Chemical and Environmental Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  6. 6.Faculty of EducationUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations