Waste and Biomass Valorization

, Volume 9, Issue 6, pp 957–968 | Cite as

Hydrolysis, Detoxification and Alcoholic Fermentation of Hemicellulose Fraction from Palm Press Fiber

  • Philipe Luan Brito
  • Crisley Mara de Azevedo Ferreira
  • André Felipe Ferreira Silva
  • Lílian de Araújo Pantoja
  • David Lee Nelson
  • Alexandre Soares dos Santos
Original Paper


The palm press fiber, resulting from the extraction of oil from the fruit of the oil palm (Elaeis guineensis) is an abundant agro-industrial co-product with a potential for development of biorefineries. This study evaluated the use of the hemicellulose fraction contained in the palm press fiber as a source of sugars for the production of bioethanol by Scheffersomyces stipitis. The optimal condition for hemicellulose hydrolysis, determined by response surface methodology, utilized 30% of dry biomass in 5% H2SO4 at 121 °C for 60 min, and resulted in removal of 88.4% of this polysaccharide. The soluble fraction recovered after the acid pretreatment, called hemicellulosic hydrolyzate, contained 83 g L−1 of reducing sugars. The hydrolyzate also contained 12 g L−1 of acetic acid, 489 mg L−1 of furfural and 46 mg L−1 of 5-hydroxymethylfurfural. The detoxification of the hydrolyzate with activated charcoal, overliming and a combination thereof was evaluated for removal of unwanted byproducts. The best detoxification treatment reduced the concentrations of phenolic compounds and furfural present in the hemicellulosic hydrolyzate by 96% and 99%, respectively. S. stipitis NRRLY 7124 and S. stipitis CBS 6054 were tested for the fermentation of the hydrolyzate. The highest yield of ethanol, 0.33 gethanol gsugar−1, was obtained with the NRRLY 7124 strain in the fermentation of the hydrolyzate detoxified by overliming. An estimated production of 12.1 L of ethanol per ton of palm press fiber derived solely from the hemicellulosic fraction was achieved.


Bioethanol Biorefinery Elaeis guineensis Oil palm Pichia Scheffersomyces 



This work was supported by scholarships and financial assistance for research and development provided by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). The strains of microorganisms utilized in this work were kindly given by Professor Thomas W. Jeffries of the University of Wisconsin. The palm press fiber was donated by the Agropalma, PA, Brazil.

Supplementary material

12649_2017_9882_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 KB)
12649_2017_9882_MOESM2_ESM.docx (45 kb)
Supplementary material 2 (DOCX 45 KB)


  1. 1.
    Basiron, Y.: Palm oil production through sustainable plantations. Eur. J. Lipid. Sci. Technol. 109, 289–295 (2007). doi: 10.1002/ejlt.200600223 CrossRefGoogle Scholar
  2. 2.
    USDA: Oilseeds: world markets and trades. http://www.fas.usda.gov/data/oilseeds-world-markets-and-trade (2016). Accessed 15 Sept 2016
  3. 3.
    Kurnia, J.C., Jangam, S.V., Akhtar, S., Sasmito, A.P., Mujumdar, A.S.: Advances in biofuel production from oil palm and palm oil processing wastes: a review. Biofuel Res. J. 3, 332–346 (2016). doi: 10.18331/BRJ2016.3.1.3 CrossRefGoogle Scholar
  4. 4.
    Tan, Y.-A.: By-products of palm oil extraction and refining. Ol. Corps gras Lipid. 13, 9–11 (2006). doi: 10.1051/ocl.2006.8888 CrossRefGoogle Scholar
  5. 5.
    Riansa-ngawong, W., Prasertsan, P.: Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process. Carbohydr. Res. 346, 103–110 (2011). doi: 10.1016/j.carres.2010.10.009 CrossRefGoogle Scholar
  6. 6.
    Ofori-Boateng, C., Lee, K.T., Saad, B.: A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: process optimization. Energy Convers. Manag. 81, 192–200 (2014). doi: 10.1016/j.enconman.2014.02.030 CrossRefGoogle Scholar
  7. 7.
    Ali, A.A.M., Othman, M.R., Shirai, Y., Hassan, M.A.: Sustainable and integrated palm oil biorefinery concept with value-addition of biomass and zero emission system. J. Clean. Prod. 91, 96–99 (2015). doi: 10.1016/j.jclepro.2014.12.030 CrossRefGoogle Scholar
  8. 8.
    Abdullah, S.S.S., Shirai, Y., Ali, A.A.M., Mustapha, M., Hassan, M.A.: Case study: Preliminary assessment of integrated palm biomass biorefinery for bioethanol production utilizing non-food sugars from oil palm frond petiole. Energy Convers. Manag. 108, 233–242 (2016). doi: 10.1016/j.enconman.2015.11.016 CrossRefGoogle Scholar
  9. 9.
    Shinoj, S., Visvanathan, R., Panigrahi, S., Kochubabu, M.: Oil palm fiber (OPF) and its composites: a review. Ind. Crops Prod. 33, 7–22 (2011). doi: 10.1016/j.indcrop.2010.09.009 CrossRefGoogle Scholar
  10. 10.
    Neoh, B.K., Thang, Y.M., Zain, M.Z.M., Junaidi, A.: Palm pressed fibre oil: a new opportunity for premium hardstock? Int. Food Res. J. 18, 769–773 (2011).Google Scholar
  11. 11.
    Boonsawang, P., Subkaree, Y., Srinorakutara, T.: Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF). Biomass Bioenergy. 40, 127–132 (2012). doi: 10.1016/j.biombioe.2012.02.009 CrossRefGoogle Scholar
  12. 12.
    Kami Delivand, M., Gnansounou, E.: Life cycle environmental impacts of a prospective palm-based biorefinery in Pará State-Brazil. Bioresour. Technol. 150, 438–446 (2013). doi: 10.1016/j.biortech.2013.07.100 CrossRefGoogle Scholar
  13. 13.
    Rincón, L.E., Moncada, J., Cardona, C.A.: Analysis of potential technological schemes for the development of oil palm industry in Colombia: a biorefinery point of view. Ind. Crops. Prod. 52, 457–465 (2014). doi: 10.1016/j.indcrop.2013.11.004 CrossRefGoogle Scholar
  14. 14.
    Zakaria, M.R., Hirata, S., Hassan, M.A.: Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber. Bioresour. Technol. 169, 236–243 (2014). doi: 10.1016/j.biortech.2014.06.095 CrossRefGoogle Scholar
  15. 15.
    Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010). doi: 10.1016/j.biortech.2010.01.088 CrossRefGoogle Scholar
  16. 16.
    Cerveró, J.M., Skovgaard, P.A., Felby, C., Sørensen, H.R., Jørgensen, H.: Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microb. Technol. 46, 177–184 (2010). doi: 10.1016/j.enzmictec.2009.10.012 CrossRefGoogle Scholar
  17. 17.
    Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550 (2012). doi: 10.1016/j.pecs.2012.02.002 CrossRefGoogle Scholar
  18. 18.
    Medina, J.D.C., Woiciechowski, A., Filho, A.Z., Nigam, P.S., Ramos, L.P., Soccol, C.R.: Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: a biorefinery approach. Bioresour. Technol. 199, 173–180 (2016). doi: 10.1016/j.biortech.2015.08.126 CrossRefGoogle Scholar
  19. 19.
    Guo, G.-L., Chen, W.-H., Chen, W.-H., Men, L.-C., Hwang, W.-S.: Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour. Technol. 99, 6046–6053 (2008). doi: 10.1016/j.biortech.2007.12.047 CrossRefGoogle Scholar
  20. 20.
    Kundu, C., Trinh, L.T.P., Lee, H.-J., Lee, J.-W.: Bioethanol production from oxalic acid-pretreated biomass and hemicellulose-rich hydrolysates via a combined detoxification process. Fuel. 161, 129–136 (2015). doi: 10.1016/j.fuel.2015.08.045 CrossRefGoogle Scholar
  21. 21.
    Chandel, A.K., Antunes, F.A.F., Arruda, P.V., Milessi, T.S.S., Silva, S.S., Almeida Felipe, M. G.: Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: state-of-the-art. In: Silva, S.S., Chandel, A.K. (eds.) D-Xylitol, pp. 39–61. Springer, Berlin (2012). doi: 10.1007/978-3-642-31887-0_2 CrossRefGoogle Scholar
  22. 22.
    Sun, Z., Shupe, A., Liu, T., Hu, R., Amidon, T.E., Liu, S.: Particle properties of sugar maple hemicellulose hydrolysate and its influence on growth and metabolic behavior of Pichia stipitis. Bioresour. Technol. 102, 2133–2136 (2011). doi: 10.1016/j.biortech.2010.08.097 CrossRefGoogle Scholar
  23. 23.
    Toquero, C., Bolado, S.: Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour. Technol. 157, 68–76 (2014). doi: 10.1016/j.biortech.2014.01.090 CrossRefGoogle Scholar
  24. 24.
    Camesasca, L., Ramírez, M.B., Guigou, M., Ferrari, M.D., Lareo, C.: Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy. 74, 193–201 (2015). doi: 10.1016/j.biombioe.2015.01.017 CrossRefGoogle Scholar
  25. 25.
    Zakaria, M.R., Hirata, S., Fujimoto, S., Ibrahim, I., Hassan, M.A.: Soluble inhibitors generated during hydrothermal pretreatment of oil palm mesocarp fiber suppressed the catalytic activity of Acremonium cellulase. Bioresour. Technol. 200, 541–547 (2016). doi: 10.1016/j.biortech.2015.10.075 CrossRefGoogle Scholar
  26. 26.
    Gupta, R., Mehta, G., Chander Kuhad, R.: Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass Bioenergy. 47, 334–341 (2012). doi: 10.1016/j.biombioe.2012.09.027 CrossRefGoogle Scholar
  27. 27.
    Mateo, S., Roberto, I.C., Sánchez, S., Moya, A.J.: Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind. Crop. Prod. 49, 196–203 (2013). doi: 10.1016/j.indcrop.2013.04.046 CrossRefGoogle Scholar
  28. 28.
    Mohagheghi, A., Ruth, M., Schell, D.J.: Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem. 41, 1806–1811 (2006). doi: 10.1016/j.procbio.2006.03.028 CrossRefGoogle Scholar
  29. 29.
    Kamal, S.M.M., Mohamad, N.L., Abdullah, A.G.L., Abdullah, N.: Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Proced. Food Sci. 1, 908–913 (2011). doi: 10.1016/j.profoo.2011.09.137 CrossRefGoogle Scholar
  30. 30.
    Chi, Z., Rover, M., Jun, E., Deaton, M., Johnston, P., Brown, R.C., Wen, Z., Jarboe, L.R.: Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour. Technol. 150, 220–227 (2013). doi: 10.1016/j.biortech.2013.09.138 CrossRefGoogle Scholar
  31. 31.
    Kurtzman, C.P., Suzuki, M.: Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience. 51, 2–14 (2010). doi: 10.1007/S10267-009-0011-5 CrossRefGoogle Scholar
  32. 32.
    Gutiérrez-Rivera, B., Ortiz-Muñiz, B., Gómez-Rodríguez, J., Cárdenas-Cágal, A., Domínguez González, J.M., Aguilar-Uscanga, M.G.: Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew. Energy 74, 399–405 (2015). doi: 10.1016/j.renene.2014.08.030 CrossRefGoogle Scholar
  33. 33.
    Agbogbo, F.K., Coward-Kelly, G.: Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30, 1515–1524 (2008). doi: 10.1007/s10529-008-9728-z CrossRefGoogle Scholar
  34. 34.
    Purwadi, R., Niklasson, C., Taherzadeh, M.J.: Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J. Biotechnol. 114, 187–198 (2004). doi: 10.1016/j.jbiotec.2004.07.006 CrossRefGoogle Scholar
  35. 35.
    Pereira Jr., N.: Intensification of the xylose fermentation process. PhD Thesis. The University of Manchester, Manchester (1991)Google Scholar
  36. 36.
    Bellido, C., Bolado, S., Coca, M., Lucas, S., González-Benito, G., García-Cubero, M.T.: Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102, 10868–10874 (2011). doi: 10.1016/j.biortech.2011.08.128 CrossRefGoogle Scholar
  37. 37.
    Van Soest, P.J.: Development of a comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 26, 119–128 (1967). doi: 10.2134/jas1967.261119x CrossRefGoogle Scholar
  38. 38.
    IAL: Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz, São Paulo (2008)Google Scholar
  39. 39.
    DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  40. 40.
    McCready, R.M., Guggolz, J., Silviera, V., Owens, H.S.: Determination of starch and amylose in vegetables. Anal. Chem. 22, 1156–1158 (1950). doi: 10.1021/ac60045a016 CrossRefGoogle Scholar
  41. 41.
    Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)Google Scholar
  42. 42.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  43. 43.
    Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Kongpanpee, T., Prabkate, P., Prachayasittikul, V.: Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol future prospects for community strengthening and sustainable development. EXCLI J. 6, 167–176 (2007)Google Scholar
  44. 44.
    Asadieraghi, M., Daud, W.M.A.W.: In-depth investigation on thermochemical characteristics of palm oil biomasses as potential biofuel sources. J. Anal. App. Pyrolysis. 115, 379–391 (2015). doi: 10.1016/j.jaap.2015.08.017 CrossRefGoogle Scholar
  45. 45.
    Costa, A.G., Pinheiro, G.C., Pinheiro, F.G.C., Dos Santos, A.B., Santaella, S.T., Leitão, R.C.: Pretreatment strategies to improve anaerobic biodegradability and methane production potential of the palm oil mesocarp fibre. Chem. Eng. J. 230, 158–165 (2013). doi: 10.1016/j.cej.2013.06.070 CrossRefGoogle Scholar
  46. 46.
    Mendu, V., Harman-Ware, A.E., Crocker, M., Jae, J., Stork, J., Morton, S., Placido, A., Huber, G., DeBolt, S.: Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol. Biofuels. 4, 43 (2011). doi: 10.1186/1754-6834-4-43 CrossRefGoogle Scholar
  47. 47.
    Heipieper, H.J., Weber, F.J., Sikkema, J., Keweloh, H., de Bont, J.A.M.: Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12, 409–415 (1994). doi: 10.1016/0167-7799(94)90029-9 CrossRefGoogle Scholar
  48. 48.
    Modig, T., Lidén, G., Taherzadeh, M.J.: Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363, 769–776 (2002)CrossRefGoogle Scholar
  49. 49.
    Delgenes, J.P., Moletta, R., Navarro, J.M.: Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 19, 220–225 (1996). doi: 10.1016/0141-0229(95)00237-5 CrossRefGoogle Scholar
  50. 50.
    Yücel, H.G., Aksu, Z.: Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel. 158, 793–799 (2015). doi: 10.1016/j.fuel.2015.06.016 CrossRefGoogle Scholar
  51. 51.
    Nilvebrant, N.-O., Persson, P., Reimann, A., De Sousa, F., Gorton, L., Jönsson, L.J.: Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl. Biochem. Biotechnol. 105–108, 615–628 (2003)CrossRefGoogle Scholar
  52. 52.
    Martinez, A., Rodriguez, M.E., York, S.W., Preston, J.F., Ingram, L.O.: Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol. Bioeng. 69, 526–536 (2000)CrossRefGoogle Scholar
  53. 53.
    Jönsson, L.J., Alriksson, B., Nilvebrant, N.-O.: Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels. 6, 16 (2013). doi: 10.1186/1754-6834-6-16 CrossRefGoogle Scholar
  54. 54.
    Díaz, M.J., Ruiz, E., Romero, I., Cara, C., Moya, M., Castro, E.: Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J. Microbiol. Biotechnol. 25, 891–899 (2009). doi: 10.1007/s11274-009-9966-9 CrossRefGoogle Scholar
  55. 55.
    Palmqvist, E., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74, 17–24 (2000). doi: 10.1016/S0960-8524(99)00160-1 CrossRefGoogle Scholar
  56. 56.
    Huang, C.-F., Lin, T.-H., Guo, G.-L., Hwang, W.-S.: Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour. Technol. 100, 3914–3920 (2009). doi: 10.1016/j.biortech.2009.02.064 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Philipe Luan Brito
    • 1
  • Crisley Mara de Azevedo Ferreira
    • 2
  • André Felipe Ferreira Silva
    • 3
  • Lílian de Araújo Pantoja
    • 3
  • David Lee Nelson
    • 1
  • Alexandre Soares dos Santos
    • 4
  1. 1.Biofuels Graduate ProgramFederal University of Vales do Jequitinhonha e MucuriDiamantinaBrazil
  2. 2.Chemistry Graduate ProgramFederal University of Vales do Jequitinhonha e MucuriDiamantinaBrazil
  3. 3.Institute of Science and TechnologyFederal University of Vales do Jequitinhonha e MucuriDiamantinaBrazil
  4. 4.Department of Basic Sciences, Faculty of Biological Science and HealthFederal University of Vales do Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations