Advertisement

Waste and Biomass Valorization

, Volume 9, Issue 1, pp 147–159 | Cite as

A Multi-objective Framework for Assessment of Recycling Strategies for Photovoltaic Modules based on Life Cycle Assessment

  • J. R. Perez-Gallardo
  • C. Azzaro-Pantel
  • S. Astier
Original Paper

Abstract

Purpose

This work assesses the environmental benefits of including the recycling strategies for PV modules at the earlier design stage of PV grid-connected systems (PVGCS) considering simultaneously techno-economic and environmental criteria.

Methods

First, two case studies from dedicated literature have been selected based on the availability of the life cycle inventory, i.e., recycling of PV modules of crystalline silicon (c-Si) and cadmium telluride (CdTe) technologies. Second, different scenarios have been formulated by varying the mix of virgin and recycled PV modules. Third, following an ecodesign framework, a bi-objective (Energy production versus Energy Payback time) optimization approach for the design of PVGCS encompassing the recycling stage has been developed to assess the formulated scenarios. The ecodesign methodology couples the life cycle assessment method with a PVGCS design model, which is then embedded in an external optimization loop based on a multi-objective genetic algorithm, i.e., a NSGA-II variant.

Results

For c-Si, the recycling strategy significantly reduces the EPBT (a factor of 1.8 is observed from the 100% virgin to the 100% recycled scenario) when considering an identical PV module efficiency and a significant decrease in Global Warming Potential (GWP), expressed in g CO2 eq per kWh, is also observed with a 20% reduction in the more extreme case. For CdTe thin film modules, the results confirm the environmental benefit when recycling of glass cullet and copper is considered. Although PV recycling modules are energy intensive, their implementation compensate for the energy used for producing virgin modules.

Conclusion

This study confirms that the end-of-life management of PV modules must be thoroughly studied not only to determine the feasibility of the process but also to assess the environmental and economic benefits.

Keywords

Multi-objective optimization Life-cycle assessment Recycling PV modules 

List of Abbreviations

AC

Alternating Current

c-Si

Crystalline Silicon

CdTe

Cadmium telluride

D

Distance between collector rows, m

DC

Direct Current

Dmin

Minimum distance between collector rows, m

DS

Deutsche solar process

Emax

Maximum collector height above ground, m

EoL

End-of-life

EPBT

Energy payback time

FS

First solar process

GA

Genetic Algorithms

GWP

Global Warming Potential

H

Collector height, m

Hm

PV module height, m

Hmax

Maximum collector height, m

K

Number of solar collector rows

Lc

Collector length, m

LCA

Life cycle assessment

Lm

PV module length, m

MCDM

Multiple-Criteria Decision-Making

PBT

Financial Payback Time

PE

Primary energy

PV

Photovoltaic

PVGCS

PV grid-connected system

Qout

Yearly output energy of the field (kWh)

RR

Recycling rate

W

Solar field width, m

β

Collector inclination angle (°)

η

PV module efficiency (%)

References

  1. 1.
    REN21: The first decade: 2004–2014, 10 years of renewable energy progress, Paris, France (2014)Google Scholar
  2. 2.
    EPIA: Solar generation 6. Solar photovoltaic electricity, Netherlands (2011)Google Scholar
  3. 3.
    Goe, M., Gaustad, G.: Strengthening the case for recycling photovoltaics: an energy payback analysis. Appl. Energy 120, 41–48 (2014)CrossRefGoogle Scholar
  4. 4.
    de Wild-Scholten, M.J., Alsema, E.: Towards cleaner Solar PV. Refocus 5(5), 46–49 (2004)CrossRefGoogle Scholar
  5. 5.
    Fthenakis, V.M., Kim, H.C.: Photovoltaics: life-cycle analyses. Sol. Energy 85, 1609–1628 (2011)CrossRefGoogle Scholar
  6. 6.
    Fthenakis, V.M., Kim, H.C., Alsema, E.: Emissions from photovoltaic life cycles. Environ. Sci. Technol. 42, 2168–2174 (2008)CrossRefGoogle Scholar
  7. 7.
    Zhong, Z.W., Song, B., Loh, P.E.: LCAs of a polycrystalline photovoltaic module and a wind turbine. Renew. Energy 36, 2227–2237 (2011)CrossRefGoogle Scholar
  8. 8.
    Union of Concerned Scientists (UCS) Environmental impacts of renewable energy technologies. http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environmental-impacts-solar-power.html#.V_KPzlvGAoA. Accessed 3 Oct 2016
  9. 9.
    Larsen, K.: End-of-life PV: then what? Renew. Energy Focus. 10, 48–53 (2009)CrossRefGoogle Scholar
  10. 10.
    McDonald, N.C., Pearce, J.M.: Producer responsibility and recycling solar photovoltaic modules. Energy Policy. 38, 7041–7047 (2010)CrossRefGoogle Scholar
  11. 11.
    Bilimoria S, Defrenne N. The evolution of photovoltaic waste in Europe. Study 1305–01. S&T Consulting and CERES (2013). http://www.sandtconsulting.eu/app/download/6093396/The+evolution+of+photovoltaic+waste+in+Europe.pdf. Accessed 31 Mar 2017
  12. 12.
    PV CYCLE: Annual report 2014, Brussels(2015)Google Scholar
  13. 13.
    Kim, H.C., Fthenakis, V., Choi, J.K., Turney, D.E.: Life cycle greenhouse gas emissions of thin-film photovoltaic electricity generation: systematic review and harmonization. J. Ind. Ecol. 16(S1), S110–S121, (2012)CrossRefGoogle Scholar
  14. 14.
    Latunussa, C.E.L., Ardente, F., Blengini, G.A., Mancini, L.: Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels, Sol. Energy Mater. Sol. Cells 156, 101–111, ISSN 0927–0248 (2016)CrossRefGoogle Scholar
  15. 15.
    International Standard Organization: ISO 14044:2006, Environmental management-life cycle assessment- requirements and guidelines (2006)Google Scholar
  16. 16.
    Ligthart, T.N., Ansems, T.A.M.M.: Modelling of recycling in LCA. In: Post-Consumer waste recycling and optimal production, p. 294. InTech (2002)Google Scholar
  17. 17.
    Komly, C.-E., Azzaro-Pantel, C., Hubert, A., Pibouleau, L., Archambault, V.: Multiobjective waste management optimization strategy coupling life cycle assessment and genetic algorithms: application to PET bottles. Resour. Conserv. Recycl. 69, 66–81 (2012)CrossRefGoogle Scholar
  18. 18.
    La Mantia, F.P.: Closed-loop recycling. A case study of films for greenhouses. Polym. Degrad. Stab. 95, 285–288 (2010)CrossRefGoogle Scholar
  19. 19.
    Williams, T.G.J.L., Heidrich, O., Sallis, P.J.: A case study of the open-loop recycling of mixed plastic waste for use in a sports-field drainage system. Resour. Conserv. Recycl. 55, 118–128 (2010)CrossRefGoogle Scholar
  20. 20.
    Ha, K.H.: Open-loop recycling to apply refrigerator plastics from post-consumer waste polypropylene. Mater. Des. 35, 310–317 (2012)CrossRefGoogle Scholar
  21. 21.
    Chen, B., Yang, J., Ouyang, Z.: Life cycle assessment of internal recycling options of steel slag in Chinese Iron and Steel Industry. J. Iron Steel Res. Int. 18, 33–40 (2011)CrossRefGoogle Scholar
  22. 22.
    Vogtländer, J.G., Brezet, H.C., Hendriks, C.F.: Allocation in recycling systems an integrated model for the analyses of environmental impact and market value. Int. J. Life Cycle Assess. 6, 1–12 (2001)CrossRefGoogle Scholar
  23. 23.
    Nicholson, A.L., Olivetti, E.A., Gregory, J.R., Field, F.R., Kirchain, R.E.: End-of-life LCA allocation methods†¯: open loop recycling impacts on robustness of material selection decisions. In: Sustainable systems and technology, pp. 1–7. IEEE (2009)Google Scholar
  24. 24.
    Frischknecht, R.: LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. Int. J. Life Cycle Assess. 15, 666–671 (2010)CrossRefGoogle Scholar
  25. 25.
    Perez-Gallardo, J.R., Azzaro-Pantel, C., Astier, S., Domenech, S., Aguilar-Lasserre, A.: Ecodesign of photovoltaic grid-connected systems. Renew. Energy 64, 82–97 (2014)CrossRefGoogle Scholar
  26. 26.
    Mondol, J.D., Yohanis, Y.G., Norton, B.: The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system. Renew. Energy 32, 118–140 (2007)CrossRefGoogle Scholar
  27. 27.
    Notton, G., Lazarov, V., Stoyanov, L.: Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renew. Energy 35, 541–554 (2010)CrossRefGoogle Scholar
  28. 28.
    Weinstock, D., Appelbaum, J.: Optimization of solar photovoltaic fields. J. Sol. Energy Eng. 131, 031003 (2009)CrossRefGoogle Scholar
  29. 29.
    Mondol, J.D., Yohanis, Y.G., Norton, B.: Optimising the economic viability of grid-connected photovoltaic systems. Appl. Energy 86, 985–999 (2009)CrossRefGoogle Scholar
  30. 30.
    Kornelakis, A., Marinakis, Y.: Contribution for optimal sizing of grid-connected PV-systems using PSO. Renew. Energy 35, 1333–1341 (2010)CrossRefGoogle Scholar
  31. 31.
    Weinstock, D., Appelbaum, J.: Optimization of economic solar field design of stationary thermal collectors. J. Sol. Energy Eng. 129, 363 (2007)CrossRefGoogle Scholar
  32. 32.
    Ito, M., Komoto, K., Kurokawa, K.: Life-cycle analyses of very-large scale PV systems using six types of PV modules. Curr. Appl. Phys. 10, S271–S273 (2010)CrossRefGoogle Scholar
  33. 33.
    Kannan, R., Leong, K.C., Osman, R., Ho, H.K., Tso, C.P.: Life cycle assessment study of solar PV systems: an example of a 2.7kWp distributed solar PV system in Singapore. Sol. Energy 80, 555–563 (2006)CrossRefGoogle Scholar
  34. 34.
    Pacca, S., Sivaraman, D., Keoleian, G.A.: Life Cycle assessment of the 33 kw photovoltaic system on the dana building at the University of Michigan, Michigan (2006)Google Scholar
  35. 35.
    Gomez, A., Pibouleau, L., Azzaro-Pantel, C., Domenech, S., Latgé, C., Haubensack, D.: Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology. Energy Convers. Manag. 51, 859–871 (2010)CrossRefGoogle Scholar
  36. 36.
    Jolliet, O., Margni, M., Charles, R.: IMPACT 2002+: a new life cycle impact assessment methodology. Int. J. LCA 8, 324–330 (2003)CrossRefGoogle Scholar
  37. 37.
    Bhat, I.K., Prakash, R.: LCA of renewable energy for electricity generation systems—a review. Renew. Sustain. Energy Rev. 13, 1067–1073 (2009)CrossRefGoogle Scholar
  38. 38.
    Huang, I.B., Keisler, J., Linkov, I.: Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci. Total Environ. 409, 3578–3594 (2011)CrossRefGoogle Scholar
  39. 39.
    Huang, Y.P., Poh, K.L., Ang, B.W.: Decision analysis in energy and environmental modeling. Energy 20, 843–855 (1995)CrossRefGoogle Scholar
  40. 40.
    Morales Mendoza, L.F., Perez Escobedo, J.L., Azzaro-Pantel, C., Pibouleau, L., Domenech, S., Aguilar-Lasserre, A.: Selecting the best portfolio alternative from a hybrid multiobjective GA-MCDM approach for new product development in the pharmaceutical industry. In: 2011 IEEE symposium on computational intelligence in multicriteria decision-making (MDCM), pp. 159–166. IEEE (2011)Google Scholar
  41. 41.
    Ahmadi, M.H., Dehghani, S., Mohammadi, A.H., Feidt, M., Barranco-Jimenez, M.A.: Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Convers. Manag. 75, 635–642 (2013)CrossRefGoogle Scholar
  42. 42.
    Ren, L., Zhang, Y., Wang, Y., Sun, Z.: Comparative analysis of a novel M-TOPSIS method and TOPSIS. Appl. Math. Res. Express. 2007, 10 (2007)MATHGoogle Scholar
  43. 43.
    Marwede, M., Reller, A.: Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resour. Conserv. Recycl. 69, 35–49 (2012)CrossRefGoogle Scholar
  44. 44.
    Sander, K., Schilling, S., Reinschmidt, J., Wambach, K., Schlenker, S., Müller, A., Springer, J., Fouquet, D., Jelitte, A., Stryi-Hipp, G., Chrometzka, T.: Study on the development of a take back and recovery system for photovoltaic products, (2007). PV Cycles, BrusselsGoogle Scholar
  45. 45.
    Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., Toro, L.: Recycling of photovoltaic panels by physical operations. Sol. Energy Mater. Sol. Cells. 123, 239–248 (2014)CrossRefGoogle Scholar
  46. 46.
    Müller, A., Wambach, K., Alsema, E.: Life cycle analysis of solar module recycling process. Mater. Res. Soc. Symp. Proc. 895, 2–4 (2006)Google Scholar
  47. 47.
    Bombach, E., Röver, I., Müller, A., Wambach, K., Kopecek, R., Wefringhaus, E.: Technical experience during thermal and chemical recycling of a 23 year old PV generator formerly installed on Pelllworm island. In: 21st European Photovoltaic Solar Energy Conference, pp. 2048–2053. Dresden, Germany (2006)Google Scholar
  48. 48.
    Centre of Enviromental Science: CML: Characterization and normalization factors (2001)Google Scholar
  49. 49.
    Held, M.: Life cycle assessment of CdTe module recycling. European Photovoltaic Solar Energy Conference, pp. 21–25. Hamburg, Germany (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • J. R. Perez-Gallardo
    • 1
  • C. Azzaro-Pantel
    • 1
  • S. Astier
    • 2
  1. 1.Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS, INPT, UPSToulouseFrance
  2. 2.Université de Toulouse, INP, ENSEEIHT, LAPLACE (Laboratoire PLAsma et Conversion d’Energie)Toulouse Cedex 7France

Personalised recommendations