Waste and Biomass Valorization

, Volume 9, Issue 5, pp 765–775 | Cite as

Cellulase- and Xylanase-Producing Bacterial Isolates with the Ability to Saccharify Wheat Straw and Their Potential Use in the Production of Pharmaceuticals and Chemicals from Lignocellulosic Materials

  • Abeer Ahmed Qaed Ahmed
  • Olubukola Oluranti Babalola
  • Tracey McKay
Original Paper
  • 201 Downloads

Abstract

The efficient use of lignocellulosic materials for pharmaceutical and chemical production relies on the hydrolysis of their components into their building blocks (e.g. hexoses and pentoses), which can be converted later into chemicals of interest. This study aimed to isolate cellulase- and xylanase-producing bacteria for the bioconversion of lignocellulosic materials into their respective monomeric sugars. Bacterial isolates were screened using CMC- and Xylan–Trypan blue agar, and then cellulase and xylanase activities were evaluated by the 3,5-dinitro-salicylic acid (DNS) method. Furthermore, bacterial ability to saccharify wheat straw was tested. Ten bacterial isolates were found to have the ability to saccharify wheat straw, and to produce cellulase and xylanase enzymes simultaneously. The bacterial isolates were identified at molecular level using 16S rRNA gene sequencing and phylogenetic analysis. Bacterial isolates were identified as Cellulomonas sp. CX4, Cellulomonas sp. CX5, Bacillus sp. CX6, Bacillus sp. CX10, Paenibacillus illinoisensis CX11, Paenibacillus sp. CX14, Bacillus cereus CX15, and Bacillus sp. CX16, Paenibacillus barcinonensis CX17 and Cellulomonas sp. CX20. Among all the isolates, Bacillus sp. CX6 showed the highest ability to produce total reducing sugar (6.03 and 6.16 mg/ml), while the lowest ability to saccharify wheat straw was found with Cellulomonas sp. CX5 (2.01 and 2.12 mg/ml). This study presents cellulase- and xylanase- producing bacterial isolates for their potential to saccharify lignocellulosic materials for possible use in the production of pharmaceuticals and chemicals.

Keywords

Cellulase Xylanase Pharmaceuticals Chemicals Lignocellulosic materials Bacteria 

Notes

Acknowledgements

AAQA and OOB are grateful for the research support provided by North-West University. AAQA and TM are thankful to the University of South Africa (UNISA) for the valuable support for their research. OOB would like to thank the National Research Foundation, South Africa for grant (Ref: UID91990), which has supported research in her laboratory.

References

  1. 1.
    Summerton, L., Sneddon, H.F., Jones, L.C., Clark, J.H.: Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry. Royal Society of Chemistry, CPI group Ltd, Croydon, UK (2016)CrossRefGoogle Scholar
  2. 2.
    Cherubini, F., Strømman, A.H.: Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod. Biorefin. 5(5), 548–561 (2011).CrossRefGoogle Scholar
  3. 3.
    Wongwilaiwalin, S., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., Champreda, V.: Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym. Microb. Technol. 47(6), 283–290 (2010)CrossRefGoogle Scholar
  4. 4.
    Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38(4), 522–550 (2012)CrossRefGoogle Scholar
  5. 5.
    Chesson, A., Forsberg, C.: Polysaccharide degradation by rumen microorganisms. In: The Rumen Microbial Ecosystem, pp. 329–381. Springer, New York (1997)CrossRefGoogle Scholar
  6. 6.
    Maki, M.L., Broere, M., Leung, K.T., Qin, W.: Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. Int. J. Biochem. Mol. Biol. 2(2), 146–154 (2011)Google Scholar
  7. 7.
    Chang, V.S., Holtzapple, M.T.: Fundamental factors affecting biomass enzymatic reactivity. In: Twenty-First Symposium on Biotechnology for Fuels and Chemicals. pp. 5–37. Springer, New York (2000)CrossRefGoogle Scholar
  8. 8.
    Ehsanipour, M., Suko, A.V., Bura, R.: Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. J. Ind. Microbiol. Biotechnol. 43(6), 807–816 (2016). doi: 10.1007/s10295-016-1756-4 CrossRefGoogle Scholar
  9. 9.
    Akhtar, J., Idris, A., Aziz, R.A.: Recent advances in production of succinic acid from lignocellulosic biomass. Appl. Microbiol. Biotechnol. 98(3), 987–1000 (2014)CrossRefGoogle Scholar
  10. 10.
    Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107(6), 2411–2502 (2007)CrossRefGoogle Scholar
  11. 11.
    Huang, X., Chen, M., Lu, X., Li, Y., Li, X., Li, J.-J.: Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb. Cell Fact. 13(1), 1 (2014)CrossRefGoogle Scholar
  12. 12.
    Kautola, H.: Itaconic acid production from xylose in repeated-batch and continuous bioreactors. Appl. Microbiol. Biotechnol. 33(1), 7–11 (1990)CrossRefGoogle Scholar
  13. 13.
    Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6(25), 4497–4559 (2015).CrossRefGoogle Scholar
  14. 14.
    Kurakake, M., Ide, N., Komaki, T.: Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr. Microbiol. 54(6), 424–428 (2007)CrossRefGoogle Scholar
  15. 15.
    Salvachúa, D., Prieto, A., López-Abelairas, M., Lu-Chau, T., Martínez, Á.T., Martínez, M.J.: Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour. Technol. 102(16), 7500–7506 (2011)CrossRefGoogle Scholar
  16. 16.
    Venkateswar Rao, L., Goli, J.K., Gentela, J., Koti, S.: Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour. Technol. 213, 299–310 (2016). doi: 10.1016/j.biortech.2016.04.092 CrossRefGoogle Scholar
  17. 17.
    Chaturvedi, V., Verma, P.: An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3. Biotech. 3(5), 415–431 (2013)Google Scholar
  18. 18.
    Maurya, D.P., Singla, A., Negi, S.: An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 5(5), 597–609 (2015)CrossRefGoogle Scholar
  19. 19.
    Gibson, D.M., King, B.C., Hayes, M.L., Bergstrom, G.C.: Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr. Opin. Microbiol. 14(3), 264–270 (2011)CrossRefGoogle Scholar
  20. 20.
    Dashtban, M., Schraft, H., Qin, W.: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5(6), 578 (2009)CrossRefGoogle Scholar
  21. 21.
    Gincy, M., Sukumaran, R.K., Singhania, R.R., Pandey, A.: Progress in research on fungal cellulases for lignocellulose degradation. J. Sci. Ind. Res. 67, 898–907 (2008).Google Scholar
  22. 22.
    Shallom, D., Shoham, Y.: Microbial hemicellulases. Curr. Opin. Microbiol. 6(3), 219–228 (2003)CrossRefGoogle Scholar
  23. 23.
    Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., Fukuda, K.: Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72(3), 805–810 (2008)CrossRefGoogle Scholar
  24. 24.
    Hu, J., Arantes, V., Saddler, J.N.: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol. Biofuels. 4(1), 1 (2011).CrossRefGoogle Scholar
  25. 25.
    Kumar, R., Wyman, C.E.: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour. Technol. 100(18), 4203–4213 (2009)CrossRefGoogle Scholar
  26. 26.
    Qing, Q., Wyman, C.E.: Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol. Biofuels 4(1), 1 (2011).CrossRefGoogle Scholar
  27. 27.
    Gusakov, A.V.: Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29(9), 419–425 (2011)CrossRefGoogle Scholar
  28. 28.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
  29. 29.
    Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)CrossRefGoogle Scholar
  30. 30.
    Robson, L.M., Chambliss, G.H.: Cellulases of bacterial origin. Enzyme Microb. Technol. 11(10), 626–644 (1989). doi: 10.1016/0141-0229(89)90001-X CrossRefGoogle Scholar
  31. 31.
    Patagundi, B.I., Kaliwal, B.: Isolation and characterization of cellulase producing bacteria from soil. Int. J. Curr. Microbiol. Appl. Sci. 3(5), 59–69 (2014)Google Scholar
  32. 32.
    Subramaniyan, S., Prema, P.: Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183(1), 1–7 (2000)CrossRefGoogle Scholar
  33. 33.
    Asha, B.M., Revathi, M., Yadav, A., Sakthivel, N.: Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J. Microbiol. Biotechnol. 22(11), 1501–1509 (2012).CrossRefGoogle Scholar
  34. 34.
    Ladeira, S.A., Cruz, E., Delatorre, A.B., Barbosa, J.B., Martins, M.L.L: Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron. J. Biotechnol. 18(2), 110–115 (2015). doi: 10.1016/j.ejbt.2014.12.008 Google Scholar
  35. 35.
    Subramaniyan, S., Prema, P.: Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22(1), 33–64 (2002). doi: 10.1080/07388550290789450 CrossRefGoogle Scholar
  36. 36.
    Gaur, R., Tiwari, S.: Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15, 19 (2015). doi: 10.1186/s12896-015-0129-9 CrossRefGoogle Scholar
  37. 37.
    Sari, S., Pangstuti, A., Susilowati, A., Purwoko, T., Mahajoeno, E., Hidayat, W., Mardhena, I., Panuntun, D., Kurniawati, D., Anitasari, R.: Cellulolytic and hemicellulolytic bacteria from the gut of Oryctes rhinoceros larvae. Biodiversitas 17(1), 78–83 (2016). doi: 10.13057/biodiv/d170111 CrossRefGoogle Scholar
  38. 38.
    Sharma, A., Tewari, R., Soni, S.: Application of statistical approach for optimizing CMCase production by Bacillus tequilensis S28 strain via submerged fermentation using wheat bran as carbon source. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 9(1), 76–86 (2015).Google Scholar
  39. 39.
    Alshelmani, M.I., Loh, T.C., Foo, H.L., Lau, W.H., Sazili, A.Q.: Biodegradation of palm kernel cake by cellulolytic and hemicellulolytic bacterial cultures through solid state fermentation. Sci. World J. 2014, 729852 (2014). doi: 10.1155/2014/729852 CrossRefGoogle Scholar
  40. 40.
    Abo-State, M.A., El-Sheikh, H.H., El-Temtamy, S.A., Hosny, M.: Isolation and identification of bacterial strains for saccharification of agriculture wastes for bioethanol production. Int. J. Adv. Res. Biol. Sci. 3(2), 170–180 (2016)Google Scholar
  41. 41.
    Akhtar, M.S., Saleem, M., Akhtar, M.W.: Saccharification of lignocellulosic materials by the cellulases of Bacillus subtilis. Int. J. Agr. Biol. 3, 199–202 (2001)Google Scholar
  42. 42.
    Sangkharak, K., Vangsirikul, P., Janthachat, S.: Isolation of novel cellulase from agricultural soil and application for ethanol production. Int. J. Adv. Biotechnol. Res. 2(2), 230–239 (2011)Google Scholar
  43. 43.
    Saxena, S., Bahadur, J., Varma, A.: Production and localisation of carboxymethylcellulase, xylanase and β-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34(5), 668–670 (1991)CrossRefGoogle Scholar
  44. 44.
    Poulsen, O., Petersen, L.: Growth of Cellulomonas sp. ATCC 21399 on different polysaccharides as sole carbon source induction of extracellular enzymes. Appl. Microbiol. Biotechnol. 29(5), 480–484 (1988)CrossRefGoogle Scholar
  45. 45.
    Rajoka, M.I., Malik, K.A.: Cellulase and hemicellulase production by Cellulomonas flavigena NIAB 441. Biotechnol. Lett. 6(9), 597–600 (1984)CrossRefGoogle Scholar
  46. 46.
    Rajoka, M.I., Malik, K.A.: Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour. Technol. 59(1), 21–27 (1997)CrossRefGoogle Scholar
  47. 47.
    Sanchez, M.M., Fritze, D., Blanco, A., Sproer, C., Tindall, B.J., Schumann, P., Kroppenstedt, R.M., Diaz, P., Pastor, F.I.: Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int. J. Syst. Evol. Microbiol. 55(Pt 2), 935–939 (2005). doi: 10.1099/ijs.0.63383-0 CrossRefGoogle Scholar
  48. 48.
    Pason, P., Kyu, K.L., Ratanakhanokchai, K.: Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72(4), 2483–2490 (2006)CrossRefGoogle Scholar
  49. 49.
    Sharma, M., Mehta, S., Kumar, A.: Purification and characterization of alkaline xylanase secreted from Paenibacillus macquariensis. Adv. Microbiol. 3, 32–41 (2013).CrossRefGoogle Scholar
  50. 50.
    Rivas, R., García-Fraile, P., Mateos, P.F., Martínez-Molina, E., Velázquez, E.: Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int. J. Syst. Evol. Microbiol. 56(12), 2777–2781 (2006)CrossRefGoogle Scholar
  51. 51.
    Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., Beltramini, J.: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40(11), 5588–5617 (2011). doi: 10.1039/c1cs15124j CrossRefGoogle Scholar
  52. 52.
    Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L.: The path forward for biofuels and biomaterials. Science. 311(5760), 484–489 (2006)CrossRefGoogle Scholar
  53. 53.
    Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., Mikkola, J.P.: Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind. Crops Prod. 32(3), 175–201 (2010). doi: 10.1016/j.indcrop.2010.04.005 CrossRefGoogle Scholar
  54. 54.
    Sun, N., Rodriguez, H., Rahman, M., Rogers, R.D.: Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?. Chem. Commun. 47(5), 1405–1421 (2011). doi: 10.1039/c0cc03990j. (Cambridge, England)CrossRefGoogle Scholar
  55. 55.
    Barakat, A., de Vries, H., Rouau, X.: Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour. Technol. 134, 362–373 (2013). doi: 10.1016/j.biortech.2013.01.169 CrossRefGoogle Scholar
  56. 56.
    Kobayashi, H., Fukuoka, A.: Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem. 15(7), 1740–1763 (2013). doi: 10.1039/C3GC00060E CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Abeer Ahmed Qaed Ahmed
    • 1
  • Olubukola Oluranti Babalola
    • 2
  • Tracey McKay
    • 1
  1. 1.Department of Environmental Sciences, School of Agriculture and Environmental SciencesUniversity of South AfricaJohannesburgSouth Africa
  2. 2.Food Security and Safety Niche Area, Faculty of Agriculture, Science and TechnologyNorth-West UniversityMafikengSouth Africa

Personalised recommendations