Waste and Biomass Valorization

, Volume 9, Issue 5, pp 821–834 | Cite as

Application of Compost and Biochar with Brassica juncea L. to Reduce Phytoavailable Concentrations in a Settling Pond Mine Soil

  • Rubén Forján
  • Alfonso Rodríguez-Vila
  • Nuria Pedrol
  • Emma F. Covelo
Original Paper


After they are closed, mines impact the environment by contaminating air, water, soil, and wetland sediments from the scattered tailings, and by polluting the groundwater with discharged leachate. Touro mine is depleted copper mine (in Galicia, north-west Spain), the settling pond soil has high bioavailable metal concentrations (mainly high Cu concentrations), extreme pH values, a low cation exchange capacity and organic matter. This study aimed to determine the capacity of biochar to fix metals (particularly in the reduction of Cu concentrations) and enhance the positive effects of compost, supported by the phytoremediation capacity of Brassica juncea L. In this experiment, brassica was chosen because several authors used this plant satisfactorily for similar purposes. The greenhouse experiment was carried out in 45-cm cylinders, and the effects of the treatments were studied at different soil depths. The study lasted a total of 11 months and was carried out in the settling pond of Touro mine. At depth 0–15 cm, the treatments applied exhibited the best effect on the reduction of the phytoavailable metal concentrations. At depth 15–30 cm, the treatments showed better results at Time 2 than at Times 1 and 3. Only at depth 0–45 cm and at Time 3, a better behaviour of the treatment elaborated with compost + biochar + B. juncea L was observed. The TC and TF values revealed that the cultivated B. juncea L. presented good phytostabilising capacity for Cu, Pb, Ni, and Zn.


Biochar Metal Settling pond mine soil Phytostabilisation Compost 


  1. 1.
    Luna, L., Miralles, I., Andrenelli, M.C., Gispert, M., Pellegrini, S., Vignozzi, N., Solé-Benet, A.: Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena. 143, 256–264 (2016)CrossRefGoogle Scholar
  2. 2.
    Nouri, M., Haddioui, A.: Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environ. Monit. Assess. 188, 6 (2016)CrossRefGoogle Scholar
  3. 3.
    Venkateswarlu, K., Nirola, R., Kuppusamy, S., Thavamani, P., Naidu, R., Megharaj, M.: Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Rev. Environ. Sci. Biotechnol. 15, 327–354 (2016)CrossRefGoogle Scholar
  4. 4.
    Fernández-Calviño, D., Pérez-Armada, L., Cutillas-Barreiro, L., Paradelo-Núñez, R., Núñez-Delgado, A., Fernández-Sanjurjo, M.J., Álvarez-Rodriguez, E., Arias-Estévez, M.: Changes in Cd, Cu, Ni, Pb and Zn fraction and liberation due to mussel Shell amendment on mine soil. Land Degrad. Develop. 27, 1276–1285 (2016)CrossRefGoogle Scholar
  5. 5.
    Puga, A.P., Abreu, C.A., Melo, L.C.A., Paz-Ferreiro, J., Beesley, L.: Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ. Sci. Pollut. Res. 22, 17606–17614 (2015)CrossRefGoogle Scholar
  6. 6.
    Venegas, A., Rigol, A., Vidal, M.: Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere. 119, 190–198 (2016)CrossRefGoogle Scholar
  7. 7.
    Walker, D.J., Clemente, R., Bernal, M.P.: Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere. 57, 215–224 (2004)CrossRefGoogle Scholar
  8. 8.
    Macía, P., Fernández-Costas, C., Rodríguez, E., Sieiro, P., Pazos, M., Sanromán, M.A.: Technosols as a novel valorization strategy for an ecological management of dredged marine sediments. Ecol. Eng. 67, 182–189 (2014)CrossRefGoogle Scholar
  9. 9.
    Forján, R., Asensio, V., Rodríguez-Vila, A., Covelo, E.F.: Contributions of a compost-biochar mixture to the metal sorption capacity of a mine tailing. Environ. Sci. Pollut. Res. 23, 2595–2602 (2016)CrossRefGoogle Scholar
  10. 10.
    Beesley, L., Marmiroli, M.: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 159, 474–480 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N., Pei, J., Huang, H.: Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 20, 8472–8483 (2013)CrossRefGoogle Scholar
  12. 12.
    Lu, H., Zhang, Y.Y., Huang, X., Wang, S., Qiu, R.: Relative distribution of Pb2 + sorption mechanisms by sludge-derived biochar. Water Res. 46, 854–862 (2012)CrossRefGoogle Scholar
  13. 13.
    Karer, J., Wawra, A., Zehetner, F., Dunst, G., Wagner, M., Pavel, P.B., Puschenreiter, M., Friesl-Hanl, W., Soja, G.: Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water Air Soil Pollut. 226, 342 (2015)CrossRefGoogle Scholar
  14. 14.
    Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., Gascó, G.: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth. 5, 65–75 (2014)CrossRefGoogle Scholar
  15. 15.
    Pilon-Smits, E.: Phytoremediation. Annu. Rev. Plant Biol. 56, 15–39 (2005)CrossRefGoogle Scholar
  16. 16.
    Yuan, M., Xu, Z.P., Huang, T.H.L.: Organic Amendment and plant growth improved aggregation in Cu/Pb-Zn tailings. Soil Sci. Soc. Am. J. (2016). doi: 10.2136/sssaj2015.03.0091 Google Scholar
  17. 17.
    Hattab, N., Soubrand, M., Guégan, R., Motelica-Heino, M., Bourrat, X., Faure, O., Buchardon, J.L.: Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances. Environ. Sci. Pollut. Res. 21, 10470–10480 (2014)CrossRefGoogle Scholar
  18. 18.
    Lombi, E., Zhao, F.J., Dunham, S.J., McGrath, S.P.: Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919–1926 (1999)CrossRefGoogle Scholar
  19. 19.
    Do Nascimento, C.W., Amarasiriwardena, D., Xing, B.: Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut. 140, 114–123 (2006)CrossRefGoogle Scholar
  20. 20.
    Rodríguez-Vila, A., Covelo, E., Forján, R., Asensio, V.: Phytoremediating a copper mine soil with Brassica juncea L. compost and biochar. Environ. Sci. Pollut. Res. 21, 11293–11304 (2014)CrossRefGoogle Scholar
  21. 21.
    Rahman, M., Azirun, S., Boyce, A.: Enhanced accumulation of Copper and Lead in Amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). Plos One 8, e62941 (2013)CrossRefGoogle Scholar
  22. 22.
    FAO: World Reference Base Soil Resources. IUSS, ISRIC, FAO, Roma (2006)Google Scholar
  23. 23.
    Porta, J.: Técnicas y Experimentos de Edafología. Collegi Oficial D´enginyers Agronoms de Catalunya, Barcelona. (1986)Google Scholar
  24. 24.
    Hendershot, W.H., Duquett, M.: A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 50, 605–608 (1986)CrossRefGoogle Scholar
  25. 25.
    Houba, V.J.G., Temminghoff, E.J.M., Gaikhorst, G.A., Van Vark, W.: Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Ana. 3, 1299–1396 (2000)CrossRefGoogle Scholar
  26. 26.
    Macías Vázquez, F., Calvo de Anta, R.: Niveles genéricos de referencia de metales pesados y otros elementos traza en los suelos de Galicia. Xunta de Galicia, Spain (2009)Google Scholar
  27. 27.
    Busuioc, G., Elekes, C.C., Stihi, C., Iordache, S., Ciulei, S.C.: The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ. Sci. Pollut. Res. 18, 890–896 (2011)CrossRefGoogle Scholar
  28. 28.
    Karami, N., Clemente, R., Moreno-Jiménez, E., Leppd, N.W., Beesley, L.: Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 191, 41–48 (2011)CrossRefGoogle Scholar
  29. 29.
    Peijnenburg, W.J.G., Jager, T.: Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotox. Environ. Safe. 56, 63–77 (2003)CrossRefGoogle Scholar
  30. 30.
    Baker, A.J.M., Brooks, R.R.: Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126 (1989)Google Scholar
  31. 31.
    Murphy, V., Hughes, H., McLoughlin, P.: Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere. 70, 1128–1134 (2008)CrossRefGoogle Scholar
  32. 32.
    Pérez-Esteban, J., Escolástico, C., Moliner, A., Masaguer, A., Ruiz-Fernández, J.: Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant Soil. 377, 97–109 (2014)CrossRefGoogle Scholar
  33. 33.
    Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribó, M., Albiach, M.: Composting olive mill pomace and other residues from rural southeastern Spain. Waste Manage. 28, 2585–2592 (2007)CrossRefGoogle Scholar
  34. 34.
    Alvarenga, P., Gonçalves, A.P., Fernandes, R.M., de Varennes, A., Vallini, G., Duarte, E., Cunha-Queda, A.C.: Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci. Total Environ. 406, 43–56 (2008)CrossRefGoogle Scholar
  35. 35.
    McBride, M.B., Suavé, S., Hendershot, W.: Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J Soil Sci. 48, 337–346 (1997)CrossRefGoogle Scholar
  36. 36.
    Fowles, M.: Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy. 31, 426–432 (2007)CrossRefGoogle Scholar
  37. 37.
    Perez-Esteban, J., Escolastico, C., Masaguer, A., Moliner, A.: Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Eur. J. Soil Sci. 63, 733–742 (2012)CrossRefGoogle Scholar
  38. 38.
    Figueira, M.M., Volesky, B., Ciminelli, V.S.T., Roddick, F.A.: Biosorption of metals in brown seaweed. Wat. Res. 34, 196–204 (2000)CrossRefGoogle Scholar
  39. 39.
    Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., Chuasavathi, T.: Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 348, 439–451 (2011)CrossRefGoogle Scholar
  40. 40.
    Temminghoff, E.J.M., Van der Zee, S., de Haan, F.: Copper mobility in a copper contaminated sandy soil as affected by pH and solid and dissolved organic matter. J. Environ. Sci. Technol. 31, 1109–1115 (1997)CrossRefGoogle Scholar
  41. 41.
    Weng, L., Temminghoff, E.J.M., Van Riemsdijk, W.H.: Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Int. J. Environ. Sci. Technol. 35, 4436–4443 (2001)Google Scholar
  42. 42.
    Kidd, P., Barceló, J., Bernal, M.P., Navari-Izzo, F., Poschenriederb, Ch., Shileve, S., Clemente, R., Monterroso, C.: Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ. Exp. Bot. 67, 243–259 (2009)CrossRefGoogle Scholar
  43. 43.
    Cunningham, S.D., Berti, W.R., Huang, J.W.: Remediation of contaminated soils and sludges by green plants. In: Hinchee, R.E., Means, J.L., Burris, D.R. (eds.), Bioremediation of Inorganics. Columbus, OH, Battelle Press (1995)Google Scholar
  44. 44.
    Mani, D., Kumar, Ch.: Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11, 843–872 (2014). doi: 10.1007/s13762-013-0299-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Rubén Forján
    • 1
  • Alfonso Rodríguez-Vila
    • 1
  • Nuria Pedrol
    • 1
  • Emma F. Covelo
    • 1
  1. 1.Department of Plant Biology and Soil Science, Faculty of BiologyUniversity of VigoVigoSpain

Personalised recommendations