Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1091–1099 | Cite as

Assessment of Chemical Inhibitor Addition to Improve the Gas Production from Biowaste

  • S. ZahediEmail author
  • S. O. Dahunsi
  • M. Perez
  • R. Solera
Original Paper

Abstract

The coexistence of sulphate-reducing bacteria and methanogenic archaea in the reactors during the anaerobic digestion from sulphate-containing waste could favor the accumulation of sulfide on the biogas, and therefore reduce its quality. In this study, the effect of sulphate-reducing bacteria inhibitor (\({\text{MoO}}_{4}^{{ - 2}}\)) addition in a two phase system from sulphate-containing municipal solid waste to improve the quality of the biogas has been investigated. The results showed that although SRB and sulphide production decreased, the use of inhibitor was not effective to improve the anaerobic digestion in a two phase system from sulphate-containing waste, since a significant decrease on biogas and organic matter removal were observed. Before \({\text{MoO}}_{4}^{{ - 2}}\) addition the average values of volatile solid were around 12 g/kg, after 5 days of inhibitor use, those values did exceed to 28 g/kg. Molybdate caused acidification in the reactor and it was according to decrease in the pH values. In relation to microbial consortia, the effect of inhibitor was a decrease in Bacteria (44%; 60% in sulphate-reducing bacteria) and Archaea (38%) populations.

Keywords

Biomethanization Inhibition Sulphate-containing solid waste Microbial community structure 

Notes

Acknowledgements

Zahedi thanks MIFAS association for people with physical disabilities, especially R. Ferrer and J. Amores (Olot, Girona, Spain). The authors wish to express their gratitude to Spanish Ministry of Economy and Competitiveness, specifically to the Project CTM 2015-64810R financed by the European Regional Development Fund (ERDF) entitled “Hydrogen-Methane Production from Biosolids and Vinasses Anaerobic Co-Digestion”.

References

  1. 1.
    Angeriz-Campoy, R., Fdez-Güelfo, L.A., Alvarez-Gallego, C., Romero, L.I.: New criteria to determine the destabilization of the acidogenic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with mixed sludge (MS). Biores. Technol. 248, 174–179 (2018).  https://doi.org/10.1016/j.biortech.2016.05.118 CrossRefGoogle Scholar
  2. 2.
    Auguet, O., Pijuan, M., Batista, J., Borrego, C.M., Gutierrez, O.: Changes in microbial biofilm communities during colonization of sewer systems. Appl. Environ. Microbiol. 81, 7271–7280 (2015).  https://doi.org/10.1128/AEM.01538-15 CrossRefGoogle Scholar
  3. 3.
    Balaguer, M.D., Vicent, M.T., París, J.M.: Anaerobic fluidized bed reactor with sepiolite as support for anaerobic treatment of vinasse. Biotech. Lett. 14, 433–438 (1992).  https://doi.org/10.1007/BF01021260 CrossRefGoogle Scholar
  4. 4.
    Biswas, K.C., Woodards, N.A., Xu, H., Barton, L.L.: Reduction of molybdate by sulfate-reducing bacteria. Biometals. 22, 131–139 (2009)CrossRefGoogle Scholar
  5. 5.
    Bolzonella, D., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F.: High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: a pilot scale study. Waste Manag. 32, 1196–1201 (2012).  https://doi.org/10.1016/j.wasman.2012.01.006 CrossRefGoogle Scholar
  6. 6.
    Browne, J.D., Allen, E., Murphy, J.D.: Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Appl. Energy. 128, 307–314 (2014).  https://doi.org/10.1016/j.apenergy.2014.04.097 CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: A review. Biores. Technol. 99, 4044–4064 (2008).  https://doi.org/10.1016/j.biortech.2007.01.057 CrossRefGoogle Scholar
  8. 8.
    Cuetos, M.J., Gomez, X., Otero, M., Morin, A.: Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 40, 99–106 (2008).  https://doi.org/10.1016/j.bej.2007.11.019 CrossRefGoogle Scholar
  9. 9.
    Dahunsi, S.O., Oranusi, S., Owolabi, J.B., Efeovbokhan, V.E.: (2016a) Mesophilic anaerobic co-digestion of poultry dropping and Carica papaya peels: modelling and process parameter optimization study. Biores. Technol. 216,  587–600 (2016a).  https://doi.org/10.1016/j.biortech.2016.05.118 CrossRefGoogle Scholar
  10. 10.
    Dahunsi, S.O., Oranusi, S., Owolabi, J.B., Efeovbokhan, V.E.: Comparative biogas generation from fruit peels of Fluted Pumpkin (Telfairia occidentalis) and its optimization. Biores. Technol. 221, 517–525 (2016b)CrossRefGoogle Scholar
  11. 11.
    De La Rubia, M.A., Raposo, F., Rincon, B., Borja, R.: Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Biores. Technol. 100, 4133–4138 (2009).  https://doi.org/10.1016/j.biortech.2009.04.001 CrossRefGoogle Scholar
  12. 12.
    Griffin, M., McMahon, K., Mackie, R., Raskin, L.: Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Bioeng. 57, 342–355 (1998)CrossRefGoogle Scholar
  13. 13.
    Isa, M.H., Anderson, G.K.: Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochem. 40, 2079–2089 (2005).  https://doi.org/10.1016/j.procbio.2004.07.025 CrossRefGoogle Scholar
  14. 14.
    Jesus, E.B., Andrade Lima, L.R.P., Bernandez, L.A., Almeida, P.F.: Inhibition of microbial sulfate reduction by molybdate. Braz. Pet. Gas. 9, 95–106 (2015)CrossRefGoogle Scholar
  15. 15.
    Mara, D., Horan, N.: Handbook of Water and Wastewater Microbiology. Academic Press-Elsevier, London (2003)Google Scholar
  16. 16.
    Martín-González, L., Font, X., Vicent, T.: Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes. Biochem. Eng. J. 76, 1–5 (2013).  https://doi.org/10.1016/j.bej.2013.03.016 CrossRefGoogle Scholar
  17. 17.
    McMahon, K.D., Stroot, P.G., Mackie, R.I., Raskin, L.: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-II: microbial population dynamics. Water Res. 35, 1817–1827 (2001).  https://doi.org/10.1016/S0043-1354(00)00438-3 CrossRefGoogle Scholar
  18. 18.
    Mohan, S.V., Rao, N.C., Prasad, K.K., Sarma, P.N.: Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochem. 40, 2849–2857 (2005).  https://doi.org/10.1016/j.procbio.2004.12.027 CrossRefGoogle Scholar
  19. 19.
    Montero, B., Garcia-Morales, J.L., Sales, D., Solera, R.: Evolution of microorganisms in thermophilic-dry anaerobic digestion. Biores. Technol. 99, 3233–3243 (2008).  https://doi.org/10.1016/j.biortech.2007.05.063 CrossRefGoogle Scholar
  20. 20.
    Muñoz, R., Meier, L., Diaz, I., Jeison, D.: A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 14, 727–759 (2015).  https://doi.org/10.1007/s11157-015-9379-1 CrossRefGoogle Scholar
  21. 21.
    Newport, P., Nedwell, D.: The mechanisms of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. J Appl Bacteriol. 65, 419–423 (1988)CrossRefGoogle Scholar
  22. 22.
    Patidar, S.K., Tare, V.: Effect of molybdate on methanogenic and sulfidogenic activity of biomass. Biores. Technol. 96, 1215–1222 (2005)CrossRefGoogle Scholar
  23. 23.
    Predicala, B., Nemati, M., Stade, S., Lague, C.: Control of H2S emission from swine manure using Na-nitrate and Na-molybdate. J. Hazerd. Mater. 154, 300–309 (2008)CrossRefGoogle Scholar
  24. 24.
    Ranade, D.R., Dighe, A.S., Bhirangi, S.S., Panhalka, V.S., Yeole, T.: Evaluation of the use of sodium molybdate to inhibit sulphate reduction during anaerobic digestion of distillery waste. Biores. Technol. 68, 287–291 (1999)CrossRefGoogle Scholar
  25. 25.
    Rasi, S., Veijanen, A., Rintala, J.: Trace compounds of biogas from different biogas production plants. Energy. 32, 1375–1380 (2007).  https://doi.org/10.1016/j.energy.2006.10.018 CrossRefGoogle Scholar
  26. 26.
    Rincón, B., Borja, R., González, J.M., Portillo, M.C., Sáiz-Jiménez, C.: Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem. Eng. J. 40, 253–261 (2008).  https://doi.org/10.1016/j.bej.2007.12.019 CrossRefGoogle Scholar
  27. 27.
    Rincon, J.R.T., Gomez, D.M.C., Caraballo, A.E.S., Alvarez, J.H.P.: Evaluacion del molibdato y nitrato sobre bacterias sulfato-reductoras asociadas a procesos de corrosion em sistemas industriales. Reve. Argent. Microbiol. 40, 52–62 (2008)Google Scholar
  28. 28.
    Romero Aguilar, M.A., Fdez-Guelfo, L.A., Alvarez-Gallego, C.J., Romero García, L.I.: Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW. Chem. Eng. J. 219, 443–449 (2013).  https://doi.org/10.1016/j.cej.2012.12.090 CrossRefGoogle Scholar
  29. 29.
    Siles Lopez, J.A., Martin Santos, M., de los, A., Chica Perez, A.F., Martín Martín, A.: Anaerobic digestion of glycerol derived from biodiesel manufacturing. Biores. Technol. 100, 5609–5615 (2009).  https://doi.org/10.1016/j.biortech.2009.06.017 CrossRefGoogle Scholar
  30. 30.
    Tucker, M., Barton, L., Thomson, B.: Removal of U and Mo from water by immobilized Desulfovibrio desulfuricans in column reactors. Biotechnol. Bioeng. 60, 88–96 (1998)CrossRefGoogle Scholar
  31. 31.
    Vossoughi, M., Shakeri, M., Alemzadeh, I.: Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratios. Chem. Eng. Process. 42, 811–816 (2003).  https://doi.org/10.1016/S0255-2701(02)00107-1 CrossRefGoogle Scholar
  32. 32.
    Xing, W., Chen, X., Zuo, J., Wang, C., Lin, J., Wang, K.: A half-submerged integrated two-phase anaerobic reactor for agricultural solid waste codigestion. Biochem. Eng. J. 88, 19–25 (2014).  https://doi.org/10.1016/j.bej.2014.03.016 CrossRefGoogle Scholar
  33. 33.
    Zahedi, S., García-Morales, J.L., Sales, D., Solera, R.: Bioenergy generation from municipal solid waste and glycerin waste: population dynamics. Energy Fuels. 31, 9550–9556 (2017).  https://doi.org/10.1021/acs.energyfuels.7b01526 CrossRefGoogle Scholar
  34. 34.
    Zahedi, S., Sales, D., Romero, L.I., Solera, R.: Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics. Biores. Technol. 146, 109–117 (2013)CrossRefGoogle Scholar
  35. 35.
    Zahedi, S., Sales, D., Romero, L.I., Solera, R.: Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. Biores. Technol. 129, 85–91 (2013).  https://doi.org/10.1016/j.biortech.2012.11.003 CrossRefGoogle Scholar
  36. 36.
    Zahedi, S., Sales, D., Romero, L.I., Solera, R.: Optimisation of the two-phase dry-thermophilic anaerobic digestion process of sulphate-containing municipal solid waste: population dynamics. Biores. Technol. 148, 443–452 (2013)CrossRefGoogle Scholar
  37. 37.
    Zahedi, S., Sales, D., Romero, L.I., Solera, R.: Dark fermentation from real solid waste. Evolution of microbial community. Biores. Technol. 151, 221–226 (2014).  https://doi.org/10.1016/j.biortech.2013.10.063 CrossRefGoogle Scholar
  38. 38.
    Zahedi, S., Solera, R., García-Morales, J.L., Ennouri, H., Sales, D.: Evaluation of the effect of glycerol supplementation on the anaerobic digestion of real municipal solid waste in batch mode. Fuel. 193, 15–21 (2017).  https://doi.org/10.1016/j.fuel.2016.12.024 CrossRefGoogle Scholar
  39. 39.
    Zahedi, S., Solera, R., Micolucci, F., Cavinato, C., Bolzonella, D.: Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste. Waste Manag. 49, 40–46 (2016).  https://doi.org/10.1016/j.wasman.2016.01.016 CrossRefGoogle Scholar
  40. 40.
    Zhang, J., Zhang, Y., Quan, X., Liu, Y., An, X., Chen, S., Zhao, H.: Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment. Chem. Eng. J. 174, 159–165 (2011).  https://doi.org/10.1016/j.cej.2011.08.069 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental TechnologiesCadiz UniversityCadizSpain
  2. 2.Biomass and Bioenergy Group, Environment and Technology Research ClusterLandmark UniversityOmu-AranNigeria
  3. 3.Biological Sciences DepartmentLandmark UniversityOmu-AranNigeria

Personalised recommendations