Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1419–1431 | Cite as

Cytotoxicity, Antioxidant and Antiviral Potential of Aqueous Extract from Nostoc muscorum Cultivated in Various Inexpensive Media

  • Emad A. ShalabyEmail author
  • Mohamed B. Atta
  • Ibtesam A. Sleem
  • Mousa A. Mohamed
  • David A. Lightfoot
  • Hany A. El-Shemy
Original Paper


The genus Nostoc is a valuable source of a wide spectrum of natural products, which have many different biological activities such as antioxidant, anticancer, anti-HIV, antimalarial, antifungal and antimicrobial drugs. The current work was aimed to evaluate the biological activities of Nostoc muscorum microalga cultivated on different waste water samples (domestic, agricultural and industrial waste water). The algae was cultivated in different kinds of waste water; sterilized BG11 media, non-sterilized treated sewage waste water media (NS-TSW), sterilized treated sewage waste water media (S-TSW), 50% BG11 + 50% sterilized TSW media (50% S-TSW), non-sterilized industrial waste water media (NS-IW), sterilized industrial waste water media (S-IW), 50% BG11 + 50% sterilized industrial waste water media (50% S-IW), non-sterilized agriculture waste water media (NS-AW), sterilized agriculture waste water media (S-AW), and 50% BG11 + 50% sterilized AW media (50% S-AW). The experiment was conducted in triplicate and cultures were incubated at 25 ± 1 °C under continuous shaking (150 rpm) and illumination (2000 lx) for 15 days. The pigments content and biological activity include antioxidant (using diphenyl picryl hydrazyl and 2,2-azino-bis ethylbenzthiazoline-6-sulfonic acid radical methods), antiviral activity against Herpes simplex virus and the cytotoxicity for aqueous extracts in vivo and in vitro assays were determined. The given results reported that use of waste water as media for cultivation of microalgae is a suitable and inexpensive method when compared with ordinary cultivation methods. Also We can conclude that the algal species has high ability to produce active ingredients used as antioxidants and antivirals especially from algae cultivated in S-TSW, 50% S-TSW, NS-AW and 50% S-AW without any toxicity in mice.


Antioxidant Antiviral Cytotoxicity In vivo toxicity Nostoc muscorum Waste water 



2,2-Azino-bis ethylbenzthiazoline-6-sulfonic acid


Agricultural waste water


Alanine aminotransferase




Aspartate aminotransferase


Butylated hydroxyl anisol


Blood urea nitrogen


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Diphenyl picryl hydrazyl


High density lipoprotein




Industrial waste water


Low density lipoprotein




Treated sewage waste water



The authors are thankful to Faculty of Agriculture in University of Cairo and University of Tanta for providing the facilities.

Author Contributions

Conceived and designed the experiments: MBA, EAS, MAM. Performed the experiments: IAS, EAS, GIM Collection of data: IAS, MBA, EAS, MAM. Analyzed the data: MBA, EAS, IAS, HAE. DAL Contributed reagents/materials/analysis tools: MBA, IAS, EAS, GIM. Wrote the paper: EAS, HAE, DAL. Revising of manuscript: EAS, HAE, DAL.


This work was partially supported by a grant from the Science and Technology Development Fund (STDF-Project ID: 312), Cairo, Egypt.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Oudra, B., Andaloussi, M.E., Vasconcelos, V.M.: Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden River (High-Atlas mountains of Marrakech, Morocco). Environ. Monit. Assess. 149, 437–444 (2009)CrossRefGoogle Scholar
  2. 2.
    Mostafa, S.M.S., Shalaby, E.A., Mahmoud, G.I.: Cultivating microalgae in domestic waste water for biodiesel production. Not. Sci. Biol. 4(1), 56–65 (2012)CrossRefGoogle Scholar
  3. 3.
    Noue, J.D., Laliberte, G., Proulx, D.: Algae and waste water. J. Appl. Phycol. 4(3), 247–254 (1992)CrossRefGoogle Scholar
  4. 4.
    Shalaby, E.A., Shanab, S.M.: Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Geo-Mar. Sci. 42(5), 556–564 (2013)Google Scholar
  5. 5.
    Nagasathya, A., Thajuddin, N.: Decolorization of paper mill effluent using hypersaline cyanobacteria. Res. Environ. Sci. 2(5), 408–414 (2008)CrossRefGoogle Scholar
  6. 6.
    Amirjani, M.R.: Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int. J. Bot. 7, 73–81 (2011)CrossRefGoogle Scholar
  7. 7.
    Karthikeyan, C.V., Gopalaswamy, G.: Studies on acid stress tolerant proteins of cyanobacterium. Int. J. Biol. Chem. 3, 1 (2009)CrossRefGoogle Scholar
  8. 8.
    Kumar, A.S., Miao, Z.H., Wyatt, S.K.: Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Biores. Technol. 101(15), 6012–6018 (2010)CrossRefGoogle Scholar
  9. 9.
    Singh, N., Rajini, P.S.: Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85, 611–616 (2004)CrossRefGoogle Scholar
  10. 10.
    Pulz, O., Gross, W.: Valuable products from biotechnology of microalgae. J. Appl. Microbiol. Biotechnol. 65, 635–648 (2004)CrossRefGoogle Scholar
  11. 11.
    Shalaby, E.A.: (2004). Chemical and biological studies on spirulina species. M Sc. Thesis, Department of Biochemistry, Faculty of Agriculture, Cairo UniversityGoogle Scholar
  12. 12.
    Rippka, R., Deruelles, J., Waterbury, J., Herdman, M., Stanier, R.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979)Google Scholar
  13. 13.
    APHA (1998). Standard methods for the examination of water and waste water, 20 edn. American Public Health Association, Washington, DC.Google Scholar
  14. 14.
    Bryant, D.A.: Phycoerythrin and phycocyanin properties and occurance in cyanobacteria. J. Gen. Microbiol. 128, 835–844 (1979)Google Scholar
  15. 15.
    Rossenthaler, L.:The Chemical Investigation of Plants. Translated into English by Sudhamoy Ghosh from the Third German edition. Bell and Sons. Ltd, London (1930)Google Scholar
  16. 16.
    Burits, M., Bucar, F.: Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 14, 323–328 (2000)CrossRefGoogle Scholar
  17. 17.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 101–105 (1999)CrossRefGoogle Scholar
  18. 18.
    KaviarasanS.,G.H.Naik,R.Gangabhagirathi,C.V.Anuradha, K.I.Priyadarsini: In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum-graecum) seeds. Food Chem.103, 31–37 (2007)CrossRefGoogle Scholar
  19. 19.
    Silva, O., Barbose, S., Diniz, A., Valdeira, M., Gomes, E.: Plant extracts antiviral activity against Herpes simplex virus type 1 and African swine fever virus. Int. J. Pharm. 35, 12–16 (1997)Google Scholar
  20. 20.
    Mossman, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)CrossRefGoogle Scholar
  21. 21.
    Bajpai, R., Sharma, N.K., Rai, A.K.: Hepatosplenomegaly and phytotoxicity of a planktonic cyanobacterium Nostoc sp. BHU001 isolated from agricultural pond. World J. Micro. Biotech. 25(11), 1995–2003 (2009)CrossRefGoogle Scholar
  22. 22.
    Repavich, W.M., Sonzogni, W.C., Standridge, J.H., Wedepohl, R.E., Meisner, L.F.: Cyanobacteria (blue-green algae) in Wisconsin waters: acute and chronic toxicity. Water Res. 24(2), 225–231 (1990)CrossRefGoogle Scholar
  23. 23.
    Erker, F., Slauohte, J., Bass, E.L., Pnvion, J., Wutoh, J.: (1985). Acute toxic effects in mice of an extract from the marine algae Gonyaulax monila ta. Toxicon. 23(5), 761–767CrossRefGoogle Scholar
  24. 24.
    Sotero-Santos, R.B., Carvalho, E.G., Dellamano-Oliveira, M.J.: Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae. 7, 590–598 (2008)CrossRefGoogle Scholar
  25. 25.
    Carson, F.L., Hladik, C.: Histotechnology, A Self-Instructional Text, 3rd edn. American Society of Clinical Pathology Press, Oxford. pp 400, (2009)Google Scholar
  26. 26.
    Sokal, R.R., Rohlf, F.J., 1981. Biometry, 2nd edn. W. H. Freeman & Co., San Francisco, pp. 241–242Google Scholar
  27. 27.
    El-Sheekh, M.M., El-Shouny, W.A., Osman, E.H., El-Gammal, E.W.: Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial waste water effluents. Environ. Toxicol. Pharmacol. 19(2), 357–365 (2005)CrossRefGoogle Scholar
  28. 28.
    Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R.: Cultivation of green algae Chlorella sp. in different waste water from municipal waste water treatment plant. J. Appl. Biochem. Biotechnol. 162(4), 174–186 (2009)CrossRefGoogle Scholar
  29. 29.
    Sallal, A.K.J.: Growth of cyanobacteria on sewage effluents. Microbios. 46, 121–129 (1986)Google Scholar
  30. 30.
    Vasconcelos, V.M., Pereira, E.: Cyanobacteria diversity and toxicity in a waste water treatment plant (Portugal). J. Water Res. 35, 1354–1357 (2001)CrossRefGoogle Scholar
  31. 31.
    Glazer, A.N.: Phycobiliproteins a family of valuable widely used fluorophores. J. Appl. Phycol. 6, 105–112 (1994)CrossRefGoogle Scholar
  32. 32.
    Shalaby, E.A., Shanab, S.M.M, Singh, V.: Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. J. Med. Plant Res. 4(24), 2622–2632 (2010)CrossRefGoogle Scholar
  33. 33.
    Shalaby, E.A., Nasr, N.F., Sherief, S.M.: An in vitro study of the antimicrobial and antioxidant efficacy of some nature essential oils. J. Med. Plant Res. 5(6), 922–931 (2011)Google Scholar
  34. 34.
    Shalaby, E.A.: Algae as promising organisms for environment and health. Plant Signal. Behav. 6(9), 1338–1350 (2011)CrossRefGoogle Scholar
  35. 35.
    Shanab, S.M.M., Mostafa, S.S.M., Shalaby, E.A., Mahmoud, G.I.: Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac. J. Trop. Biomed. 2(8), 608–615 (2012)CrossRefGoogle Scholar
  36. 36.
    Fooa, S.C., Yusoff, F.Md., Ismail, M., Basri, M., Yaua, S.K., Khonga, N.M.H., Chana, K.W., Ebrahimi, M.: Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J. Biotechnol. 241, 175–183 (2017)CrossRefGoogle Scholar
  37. 37.
    Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., Sugawara, M., Iseki, K.: In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharmaceut. 403, 136–138 (2011)CrossRefGoogle Scholar
  38. 38.
    Romeilah, R.M., Fayed, S.A., Mahmoud, G.I.: Chemical compositions, antiviral and antioxidant activities of seven essential oils. J. Appl. Sci. Res. 6, 50–62 (2010)Google Scholar
  39. 39.
    Qiu, D., Guo, J., Yu, H., Yang, S., Li, X., Zhang, Y., Sun, J., Cong, J., He, S., Wei, D., Qin, J.: Antioxidant phenolic compounds isolated from wild Pyrus ussuriensis Maxim. fruit peels and leaves. Food Chem. 241(15), 182–187 (2018)CrossRefGoogle Scholar
  40. 40.
    Erker, F., Slauohte., J., Bass, E.L., Pnvion, J., Wutoh, J.: Acute toxic effects in mice of an extract from the marine algae Gonyaulax monila ta. Toxicity. 23(5), 761–767 (1985)Google Scholar
  41. 41.
    Carmichael, W.W.: Algal toxins. In: Callow R. Advances in Botanical Re­search, vol. 12, p. 47101. Academic Press, London (1986)Google Scholar
  42. 42.
    Machleder, D., Ivandic, B., Welch, C., Castellani, L., Reue, K.: Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J. Clin. Invest. 99, 1406–1419 (1997)CrossRefGoogle Scholar
  43. 43.
    He, M., Su, H., Gao, W., Johansson, S.M., Liu, Q., Wu, X., Young, A.A., Bartfai, T., Wang, M.W., Liao, J.: Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice. PLoS ONE. 5(12), e14205 (2010)CrossRefGoogle Scholar
  44. 44.
    Serfilippi, L.M., Stackhouse, P.D., Russell, B., Spainhour, C.B.: Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. J. Am. Assoc. Lab. Animal Sci. 42(3), 46–52 (2003)Google Scholar
  45. 45.
    Fernández, I., Peña, A., Teso, N.D., Pérez, V., Rodríguez-Cuesta, J.: Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J. Am. Assoc. Lab. Anim. Sci. 49(2), 202–206 (2010)Google Scholar
  46. 46.
    Anon.: The National Cholesterol Education Program. J. American Medi. Assoc. 280(24), 2099–2104 (1998)CrossRefGoogle Scholar
  47. 47.
    Anon.: Normal Values In The Mouse. Iowa State University of Science and Technology (2012).

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Emad A. Shalaby
    • 1
    Email author
  • Mohamed B. Atta
    • 2
  • Ibtesam A. Sleem
    • 2
  • Mousa A. Mohamed
    • 2
  • David A. Lightfoot
    • 3
  • Hany A. El-Shemy
    • 1
  1. 1.Biochemistry Department, Faculty of AgricultureCairo UniversityGizaEgypt
  2. 2.Food Science and Technology Department, Faculty of AgricultureTanta UniversityTantaEgypt
  3. 3.Genomics Core-FacilitySouthern Illinois University at CarbondaleCarbondleUSA

Personalised recommendations