Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 6, pp 1669–1677 | Cite as

Thermogravimetric and Calorimetric Characteristics of Alternative Fuel in Terms of Its Use in Low-Temperature Pyrolysis

  • Paweł Stępień
  • Jakub PulkaEmail author
  • Małgorzata Serowik
  • Andrzej Białowiec
Original Paper

Abstract

One of the refuse derived fuel (RDF) utilization methods is low temperature pyrolysis. However, the high heterogeneity of RDF and the fact that its various components may influence on the degradation of other components causes difficulties with proper energy balance of the process. Determination of the energy balance could be performed with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Those methods allows the identification of kinetics of organic matter degradation in thermal processes, the calculation of activation energy, and energy demand/release during organic matter transformations. TGA and DSC were used to examine the potential of using RDF in low temperature pyrolysis. TGA analysis shows that main organic matter decomposition in RDF occurs at temperature range between 400 and 600 °C. This temperature range is typical for plastics decomposition, as plastics are a main component of alternative fuel derived from municipal solid waste. For the analyzed RDF samples activation energy within the 400–600 °C temperature range was at the level of 25.5 kJ mol−1. The four distinctive specific heat changes in the tested RDF material were observed, which means, four specific materials groups were decomposed. Four of this reaction were endothermal, and one was exothermal. The whole process is endothermic. The energy demand for transformations is − 63.62 J g−1. The results also shown that RDF low temperature pyrolysis product’s lower calorific value was at the level of 7.55 MJ kg−1, thus pyrolysis should not be considered as a pretreatment method for preparing CRDF for energy reuse.

Keywords

Refuse derived fuel Carbon refuse derived fuel Pyrolysis Thermogravimetric analysis Differential scanning calorimetry 

Notes

Acknowledgements

The research is funded by the Polish Ministry of Science and Higher Education (2015–2019) under the Diamond Grant program nr. 0077/DIA/2015/14.

Supplementary material

12649_2017_169_MOESM1_ESM.pdf (61 kb)
Supplementary material 1 (PDF 60 KB)
12649_2017_169_MOESM2_ESM.pdf (267 kb)
Supplementary material 2 (PDF 267 KB)
12649_2017_169_MOESM3_ESM.pdf (291 kb)
Supplementary material 3 (PDF 290 KB)

References

  1. 1.
    PN-EN 15375:2011 Standard. Secondary solid fuels—terminology, definitions and termsGoogle Scholar
  2. 2.
    Winkel, R., Hamelinck, C., Bardout, M., Bucquet, C., Ping, S., Cuijpers, M., Artuso, D., Bonafede, S.: Alternative fuels and infrastructure in seven non-EU markets—final report. Brussels, Belgium (2016)Google Scholar
  3. 3.
    Regulation of the Ministry of the Environment, 27 Sept 2001 on the waste catalogGoogle Scholar
  4. 4.
    PN-EN 15359:2012 Standard. Secondary solid fuels—technical requirements and classesGoogle Scholar
  5. 5.
    Dalai, A.K., Batta, N., Eswaramoorthi, I., Schoenau, G.J.: Gasification of refuse derived fuel in a fixed bed reactor for syngas production. Waste Manag. (2009).  https://doi.org/10.1016/j.wasman.2008.02.009 Google Scholar
  6. 6.
    Nowak, M., Szul, M.: Possibilities for application of alternative fuels in Poland. Arch. Waste Manag. Environ. Prot. 18, 33–44 (2016)Google Scholar
  7. 7.
    Ulewicz, M., Maciejewski, P.: Ekologiczne korzyści ze spalania paliw alternatywnych (Application of alternative fuels—ecological benefits). Zeszyty naukowe WSOWL 2, 384–392 (2011)Google Scholar
  8. 8.
    Velis, C.A., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.T.: Production and quality assurance of solid recovered fuels using mechanical-biological treatment (MBT) of waste: a comprehensive assessment. Crit. Rev. Environ. Sci. Technol. (2010).  https://doi.org/10.1080/10643380802586980 Google Scholar
  9. 9.
    Kraszewski, A.: Rynek paliw alternatywnych wytwarzanych na potrzeby przemysłu cementowego w Polsce (The market for alternative fuels produced for the needs of the cement industry in Poland). 11 Seminarium Co-processing paliw alternatywnych w cementowniach. Kraków. (2015)Google Scholar
  10. 10.
    Radzięciak, T.: 20 lat co-processingu paliw alternatywnych w cementowniach w Polsce (20 years co-processing of alternative fuels in cement plants in Poland.). 11 Seminarium Co-processing paliw alternatywnych w cementowniach. (11 Seminar Co-processing of alternative fuels in cement). Kraków. (2015)Google Scholar
  11. 11.
    Buah, W.K., Cunliffe, A.M., Williams, P.T.: Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ. Prot. (2007).  https://doi.org/10.1205/psep07024 Google Scholar
  12. 12.
    Ansah, E., Wang, L., Shahbazi, A.: Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Manag. (2016).  https://doi.org/10.1016/j.wasman.2016.06.015 Google Scholar
  13. 13.
    Ahn, S.Y., Eom, S.Y., Rhie, Y.H., Sung, Y.M., Moon, C.E.: Application of refuse fuels in a direct carbon fuel cell system. Energy (2013).  https://doi.org/10.1016/j.energy.2012.12.025 Google Scholar
  14. 14.
    Velghe, I., Carleer, R., Yperman, J., Schreurs, S.: Study of the pyrolysis of municipal solid waste for the production of valuable products. J Anal Appl. Pyrol. (2011).  https://doi.org/10.1016/j.jaap.2011.07.011 Google Scholar
  15. 15.
    Nowak, M., Cichy, B.: Szerokie spektrum możliwości analizy termicznej w badaniach i przemyśle (Broad spectrum of thermal analysis capabilities in research and industry). Chemik 68, 216–223 (2014)Google Scholar
  16. 16.
    Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy (2011).  https://doi.org/10.1016/j.biombioe.2010.08.067 Google Scholar
  17. 17.
    Edo, M., Budarin, V., Aracil, I., Persson, P., Jansson, S.: The combined effect of plastics and food waste accelerates the thermal decomposition of refuse-derived fuels and fuel blends. Fuel (2016).  https://doi.org/10.1016/j.fuel.2016.04.062 Google Scholar
  18. 18.
    Cozzani, V., Petarca, L., Tognotti, L.: Devolatilization and pyrolysis of refuse derived fuels: characterization and kinetic modelling by a thermogravimetric and calorimetric approach. Fuel (1995).  https://doi.org/10.1016/0016-2361(94)00018-M Google Scholar
  19. 19.
    Malinowski, M., Wolny-Koładka, K.: Badanie procesu samonagrzewania się paliwa alternatywnego wytworzonego ze zmieszanych odpadów komunalnych (Investigation of the self-heating process of an alternative fuel derived from municipal solid waste). Proc. Ecopole (2015).  https://doi.org/10.2429/proc.2015.9(1)034 Google Scholar
  20. 20.
    Białowiec, A., Pulka, J., Stępień, P., Manczarski, P., Gołaszewski, J.: The RDF/SRF torrefaction: An effect of temperature on characterization of the product—carbonized refuse derived fuel. Waste Manag. (2017).  https://doi.org/10.1016/j.wasman.2017.09.020 Google Scholar
  21. 21.
    Madanayake, B.N., Gan, S., Eastwick, C., Ng, H.K.: Thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock. Energy (2016).  https://doi.org/10.1016/j.energy.2016.01.097 Google Scholar
  22. 22.
    PN-EN 14346:2011 Standard. Waste characteristics. Calculation of dry mass on the basis of dry residue or water contentGoogle Scholar
  23. 23.
    PN-EN 15169:2011 Standard. Waste characteristics. Determination of organic matter content for waste, slurry and sludgeGoogle Scholar
  24. 24.
    PN-Z-15008-04:1993 Standard. Municipal solid waste. Analysis of combustible and non-combustible contentGoogle Scholar
  25. 25.
    PN-G-04516:1998 Standard. Solid fuels. Determination of volatile content by means of the gravimetric methodGoogle Scholar
  26. 26.
    PN-G-04513:1981 Standard. Solid fuels. Determination of the higher heating value and the lower heating valueGoogle Scholar
  27. 27.
    Kluska, J., Klein, M., Kazimierski, P., Kardaś, D.: Pyrolysis of biomass and refuse derived fuel performance in laboratory scale batch reactor. Arch. Thermodyn. (2014).  https://doi.org/10.2478/aoter-2014-0009 Google Scholar
  28. 28.
    Bates, R.B., Ghoniem, A.F.: Biomass torrefaction: modeling of reaction thermochemistry. Bioresour. Technol. (2012).  https://doi.org/10.1016/j.biortech.2013.01.158 Google Scholar
  29. 29.
    Soria-Verdugo, A., Goos, E., Gorcia-Hernando, N.: Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the distributed activation energy model. Fuel Process. Technol. (2015).  https://doi.org/10.1016/j.fuproc.2015.02.018 Google Scholar
  30. 30.
    Marcus, S.M., Blaine, R.L.: Thermal conductivity of polymers, glasses & ceramics by modulated DSC. Thermochim. Acta (1994).  https://doi.org/10.1016/0040-6031(94)85058-5 Google Scholar
  31. 31.
    Rostek, E., Biernat, K.: Thermogravimetric biomas-to-liquid processes. J. Kones Powertrain Transp. 18, 377–383 (2011)Google Scholar
  32. 32.
    Seo, M.W., Kim, S.D., Lee, S.H., Lee, J.G.: Pyrolysis characteristics of coal and RDF blends in non-isothermal and isothermal conditions. J. Anal. Appl. Pyrol. (2010).  https://doi.org/10.1016/j.jaap.2010.03.010 Google Scholar
  33. 33.
    Singh, S., Wu, Ch, Williams, P.T.: Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterization techniques. J. Anal. Appl. Pyrol. (2012).  https://doi.org/10.1016/j.jaap.2011.11.011 Google Scholar
  34. 34.
    Robinson, T., Bronson, B., Gogolek, P., Mehrani, P.: Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel. Waste Manag. (2016).  https://doi.org/10.1016/j.wasman.2015.11.018 Google Scholar
  35. 35.
    Çepolioğullar, Ö, Haykiri-Açma, H., Yaman, S.: Kinetic modeling of RDF pyrolysis: Model-fitting and model-free approaches. Waste Manag. (2016).  https://doi.org/10.1016/j.wasman.2015.11.027 Google Scholar
  36. 36.
    Mizerski, W.: Tablice chemiczne wydanie drugie (Chemical tables second edition), Adamantan, Warszawa, (1997), pp. 38–39Google Scholar
  37. 37.
    Kordylewski, W., Bulewicz, E., Dyjakon, A., Hardy, T., Słupek, S., Miller, R., Wanik, A.: Spalanie i paliwa (Combustion and fuels). OWP, Wrocław, (2005), pp. 285–300Google Scholar
  38. 38.
    Jaworski, T.: Problematyka modelowania matematycznego procesów termicznego przekształcania odpadów stałych (The problem of mathematical modeling of processes solid waste incineration). Piece Przemysłowe i Kotły 1, 8–14 (2015)Google Scholar
  39. 39.
    Grammelis, P., Basisnas, P., Malliopoulou, A., Sakellaropoulos, G.: Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel (2009).  https://doi.org/10.1016/j.fuel.2008.02.002 Google Scholar
  40. 40.
    Glazoff, M.V.: Process stety review: molten salt pyrolysis of oil residue for energy industry, A Computational Thermodynamics Perspective. Technical Report. (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Life Sciences and Technology, Institute of Agricultural EngineeringWroclaw University of Environmental and Life SciencesWroclawPoland

Personalised recommendations