Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 763–769 | Cite as

Valorization of Grapefruit By-Products as Solid Support for Solid-State Fermentation to Produce Antioxidant Bioactive Extracts

  • Ramón Larios-Cruz
  • Juan Buenrostro-Figueroa
  • Arely Prado-Barragán
  • Rosa M. Rodríguez-Jasso
  • Raúl Rodríguez-Herrera
  • Julio C. Montañez
  • Cristóbal N. AguilarEmail author
Original Paper
  • 126 Downloads

Abstract

Solid-state fermentation is a microbial process carried out mostly on the surface of solid materials. Grapefruit by-products are solids that can be used as a substrate-support matrix for fungal growth in solid fermentation. On the other hand, with the fermentation, the valorization of grapefruit by-products can be done because of recovery of secondary metabolites such as antioxidants. Fermentations were done using Raimbault columns as bioreactors. Two mixture levels (50 and 70% moisture content) were evaluated. Fungal growth was analysed online by CO2 quantification for fermentation of grapefruit by-products with Aspergillus niger GH1. Ethanolic extracts were used for antioxidant analyses (FRAP, LOI and DPPH·radical-scavenging). A. niger GH1 showed better growth on grapefruit by-products at 70% moisture content. Recovery of antioxidant compounds and solids reduction (50% of solids loss) was also higher at 70% moisture content. These results suggest that solid-state fermentation has great potential for valorization of grapefruit by-products as a support and a carbon source to produce antioxidants.

Keywords

Aspergillus niger GH1 CO2 production Antioxidant extraction Packed-bed bioreactor 

Notes

Acknowledgements

RLC thanks the Mexican Council for Science and Technology (CONACYT) Mexico for the financial support during his MSc studies.

References

  1. 1.
    Haminiuk, C.W.I., Maciel, G.M., Plata-Oviedo, M.S.V., Peralta, R.M.: Phenolic compounds in fruits—an overview. Int. J. Food Sci. Technol. 47(10), 2023–2044 (2012)CrossRefGoogle Scholar
  2. 2.
    Li, B.B., Smith, B., Hossain, M.M.: Extraction of phenolics from citrus peels I. Solvent extraction method. Sep. Purif. Technol. 48(2), 182–188 (2006)CrossRefGoogle Scholar
  3. 3.
    de Moraes Barros, H.R., de Castro Ferreira, T.A., Genovese, M.I.: Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem. 134(4), 1892–1898 (2012)CrossRefGoogle Scholar
  4. 4.
    Lagha-Benamrouche, S., Madani, K.: Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind. Crops Prod. 50(0), 723–730 (2013)CrossRefGoogle Scholar
  5. 5.
    Xu, G.H., Chen, J.C., Liu, D.H., Zhang, Y.H., Jiang, P., Ye, X.Q.: Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J. Food Sci. 73(1), C11–C18 (2008)Google Scholar
  6. 6.
    Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., Madani, K.: Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod. 50(0), 77–87 (2013)CrossRefGoogle Scholar
  7. 7.
    Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., Ye, X.: Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. J. Food Sci. 78(1), C37–C42 (2013)CrossRefGoogle Scholar
  8. 8.
    Hayat, K., Zhang, X., Farooq, U., Abbas, S., Xia, S., Jia, C., et al.: Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123(2), 423–429 (2010)CrossRefGoogle Scholar
  9. 9.
    Li, B.B., Smith, B., Hossain, M.M.: Extraction of phenolics from citrus peels II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48(2), 189–196 (2006)CrossRefGoogle Scholar
  10. 10.
    Yang, F.-C., Ma, T.-W., Lee, Y.-H.: Reuse of citrus peel to enhance the formation of bioactive metabolite-triterpenoid in solid-state fermentation of A. cinnamomea. Biochem. Eng. J. 78(0), 59–66 (2013)CrossRefGoogle Scholar
  11. 11.
    Viniegra-González, G.: Solid state fermentation: definition, characteristics, limitations and monitoring. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-González, G. (eds.) Advances in Solid State Fermentation, pp. 5–22. Springer, Netherlands (1997)CrossRefGoogle Scholar
  12. 12.
    Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013)CrossRefGoogle Scholar
  13. 13.
    Chen, H., He, Q.: Value-added bioconversion of biomass by solid-state fermentation. J. Chem. Technol. Biotechnol. 87(12), 1619–1625 (2012)CrossRefGoogle Scholar
  14. 14.
    Ooijkaas, L.P., Weber, F.J., Buitelaar, R.M., Tramper, J., Rinzema, A.: Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 18(8), 356–360 (2000)CrossRefGoogle Scholar
  15. 15.
    Hölker, U., Lenz, J.: Solid-state fermentation—are there any biotechnological advantages? Curr. Opin. Microbiol. 8(3), 301–306 (2005)CrossRefGoogle Scholar
  16. 16.
    Schuster, E., Dunn-Coleman, N., Frisvad, J., van Dijck, P.: On the safety of Aspergillus niger—a review. Appl. Microbiol. Biotechnol. 59(4–5), 426–435 (2002)Google Scholar
  17. 17.
    Buenrostro-Figueroa, J., Ascacio-Valdés, A., Sepúlveda, L., De la Cruz, R., Prado-Barragán, A., Aguilar-González, M.A., et al.: Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprocess. Technol. 92(4), 376–382 (2014)Google Scholar
  18. 18.
    AOAC: Official Methods of Analysis. Association of Official Analytical Chemist, USA (1990)Google Scholar
  19. 19.
    Raimbault, M., Alazard, D.: Culture method to study fungal growth in solid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 9(3), 199–209 (1980)CrossRefGoogle Scholar
  20. 20.
    Saucedo-Castañeda, G., Trejo-Hernández, M.R., Lonsane, B.K., Navarro, J.M., Roussos, S., Dufour, D., et al.: On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem. 29(1), 13–24 (1994)CrossRefGoogle Scholar
  21. 21.
    Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2007)zbMATHGoogle Scholar
  22. 22.
    Meléndez, N.P., Nevárez-Moorillón, V., Rodríguez-Herrera, R., Espinoza, J.C., Aguilar, C.N.: A microassay for quantification of 2,2-diphenyl-1-picrylhydracyl (DPPH) free radical scavenging. Afr. J. Biochem. Res. 8(1), 14–18 (2014)CrossRefGoogle Scholar
  23. 23.
    Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996)CrossRefGoogle Scholar
  24. 24.
    Martínez-Ávila, G.C., Aguilera-Carbó, A.F., Rodríguez-Herrera, R., Aguilar, C.N.: Fungal enhancement of the antioxidant properties of grape waste. Ann. Microbiol. 62(3), 923–930 (2012)CrossRefGoogle Scholar
  25. 25.
    Rhee, K.S.: Factors affecting oxygen uptake in model systems used for investigating lipid peroxidation in meat. J. Food Sci. 43(1), 6–9 (1978)CrossRefGoogle Scholar
  26. 26.
    Toivonen, P.M.A., Sweeney, M.: Differences in chlorophyll loss at 13 °C for two broccoli (Brassica oleracea L.) cultivars associated with antioxidant enzyme activities. J. Agric. Food Chem. 46(1), 20–24 (1998)CrossRefGoogle Scholar
  27. 27.
    Robledo, A., Aguilera-Carbó, A., Rodriguez, R., Martinez, J., Garza, Y., Aguilar, C.N.: Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J. Ind. Microbiol. Biotechnol. 35(6), 507–513 (2008)CrossRefGoogle Scholar
  28. 28.
    Orzua, M.C., Mussatto, S.I., Contreras-Esquivel, J.C., Rodriguez, R., de la Garza, H., Teixeira, J.A., et al.: Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 30(1), 24–27 (2009)CrossRefGoogle Scholar
  29. 29.
    Moo-Young, M., Moreira, A., Tengerdy, R.: Principles of solid-substrate fermentation. In: Smith, J.E., Berry, D.R., Kristiansen, B. (eds.) The Filamentous Fungi, pp. 117–144. Edward Arnold, London (1983)Google Scholar
  30. 30.
    Rincón, A.M., Vásquez, A., Padilla, M.: Composición química y compuestos bioactivos de las harinas de cáscaras de naranja (citrus sinensis), mandarina (citrus reticulata) y toronja (citrus paradisi) cultivadas en Venezuela. Arch. Latinoam. Nutr. 55, 305–310 (2005)Google Scholar
  31. 31.
    Nagel, F.-J.J.I., Tramper, J., Bakker, M.S.N., Rinzema, A.: Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol. Bioeng. 72(2), 219–230 (2001)CrossRefGoogle Scholar
  32. 32.
    Rahardjo, Y.S.P., Tramper, J., Rinzema, A.: Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol. Adv. 24(2), 161–179 (2006)CrossRefGoogle Scholar
  33. 33.
    Chen, H.: Modern Solid State Fermentation—Theory and Practice. Springer, Londres (2013)CrossRefGoogle Scholar
  34. 34.
    Gervais, P., Molin, P.: The role of water in solid-state fermentation. Biochem. Eng. J. 13(2–3), 85–101 (2003)CrossRefGoogle Scholar
  35. 35.
    Ajila, C.M., Gassara, F., Brar, S., Verma, M., Tyagi, R.D., Valéro, J.R.: Polyphenolic antioxidant mobilization in apple pomace by different methods of solid-state fermentation and evaluation of its antioxidant activity. Food Bioprocess. Technol. 5(7), 2697–2707 (2012)CrossRefGoogle Scholar
  36. 36.
    Ajila, C.M., Brar, S.K., Verma, M., Tyagi, R.D., Valéro, J.R.: Solid-state fermentation of apple pomace using Phanerocheate chrysosporium—liberation and extraction of phenolic antioxidants. Food Chem. 126(3), 1071–1080 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Ramón Larios-Cruz
    • 1
  • Juan Buenrostro-Figueroa
    • 3
  • Arely Prado-Barragán
    • 2
  • Rosa M. Rodríguez-Jasso
    • 1
  • Raúl Rodríguez-Herrera
    • 1
  • Julio C. Montañez
    • 1
  • Cristóbal N. Aguilar
    • 1
    Email author
  1. 1.Group of Bioprocesses, Food Research DepartmentUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Department of BiotechnologyUniversidad Autónoma Metropolitana Unidad IztapalapaCiudad de MéxicoMexico
  3. 3.A.C. Unidad DeliciasCentro de Investigación en Alimentación y DesarrolloChihuahuaMexico

Personalised recommendations