Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1223–1229 | Cite as

Enzymatic Activity and Biochemical Composition in Leaves of Green Bean (Phaseolus vulgaris L. cv. Saxa) Grown in Almond Shell Substrates

  • I. OliveiraEmail author
  • A. S. Meyer
  • A. Aires
  • S. Afonso
  • B. Gonçalves
Short Communication


The almond shell is the main by-product of almond production, and is currently a material with no important use. However, it is produced each year in considerable amounts, and finding an alternative and valuable use is of great interest. This work intends to elucidate the possibility of the addition of almond shell to growth substrates on green bean plant and its effect on leaf characteristics. Almond shell was used in a mixture of 20% shell and 80% peat (AS), and compared to the control (C) substrate, a mix of 33.3% of vermiculite and 66.6% of peat, using low and well watering conditions (50 or 100% of field capacity). The parameters that were evaluated include biochemical parameters of leaves, namely photosynthetic pigments, total phenolics and antioxidant activity, proteins, but also enzymatic activity and phytohormonal content. The addition of almond shell did not result in changes of the content of photosynthetic pigments, but led to negative changes on several of the remaining parameters, including yield, recorded enzymatic activity, ABA content and lipid peroxidation. These results indicate some deleterious effect of the addition of almond shell to growth substrates for cultivation of green bean.


Growth substrates Photosynthetic pigments Total phenolics Antioxidant activity, enzymatic activity Phytohormonal content 



Ivo Oliveira is grateful to FCT—Fundação para a Ciência e a Tecnologia (FCT), POPH-QREN and FSE for the Post-doctoral Fellowship SFRH/BPD/111005/2015. This work was supported by: European Investment Funds by FEDER/COMPETE/POCI—Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT—Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013.


  1. 1.
    Ábrahám, E., Hourton-Cabassa, C., Erdei, L., Szabados, L.: Methods for determination of proline in plants. Methods Mol. Biol. 639, 317–331 (2010)CrossRefGoogle Scholar
  2. 2.
    Aebi, H.: Catalase in vitro. Methods Enzymol. 105, 121–126 (1984)CrossRefGoogle Scholar
  3. 3.
    Alscher, P.G., Erturk, N., Heath, L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. J. Exp. Bot. 53, 1331–1341 (2002)CrossRefGoogle Scholar
  4. 4.
    Apel, K., Hirt, H.: Reactive oxygen species: metabolism oxidatives and signal transduction. Ann. Rev. Plant Physiol. Plant Mol. Biol. 55, 373–399 (2004)CrossRefGoogle Scholar
  5. 5.
    Barneix, A., Causin, H.: The central role of amino acids on nitrogen utilization and plant growth. J. Plant Physiol. 149, 358–362 (1996)CrossRefGoogle Scholar
  6. 6.
    Bouchaaba, Z., Santamaria, P., Choukr-Allah, R., Lamaddalena, N., Montesano, F.: Open-cycle drip vs closed-cycle subirrigation: Effects on growth and yield of greenhouse soilless green bean. Sci. Hortic. Amsterdam. 182, 77–85 (2015)CrossRefGoogle Scholar
  7. 7.
    Chance, B., Machly, C.: Assay of catalase and peroxidases. Methods Enzymol. 11, 764–775 (1955)CrossRefGoogle Scholar
  8. 8.
    Chen, P., Yanling, C., Shaobo, D., Xiangyang, L., Guangwei, H., Ruan, R.: Utilization of almond residues. Int. J. Agric. Biol. Eng. 3, 1–18 (2010)Google Scholar
  9. 9.
    Dai, A., Nie, Y., Yu, B., Li, Q., Lu, L., Bai, J.: Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ. Exp. Bot. 79, 1–10 (2012)CrossRefGoogle Scholar
  10. 10.
    Domash, V., Protsko, R., Vasyuk, V., Shumikhin, S., Ermolitskaya, L., Sharpio, T.: The content of abscisic acid and the activities of proteinases and trypsin inhibitory proteins, in the germinating seed of common beans under water stress conditions. Appl. Biochem. Microbiol. 42, 97–100 (2006)CrossRefGoogle Scholar
  11. 11.
    Draper, H., Hadley, M.: Malondialdehyde determination as index of lipid peroxidation. Method. Enzymol. 186, 421–431 (1990)CrossRefGoogle Scholar
  12. 12.
    Düring, H.: Photosynthesis of ungrafted and grafted grapevines: effects of rootstock genotype and plant age. Am. J. Enol. Viticult. 45, 297–299 (1994)Google Scholar
  13. 13.
    Ergün, N., Topcuoğlu, F., Yildiz, A.: Auxin (Indole-3-acetic acid), gibberellic acid (GA3), abscisic Acid (ABA) and cytokinin (Zeatin) production by some species of mosses and lichens. Turk. J. Botany. 26, 13–18 (2002)Google Scholar
  14. 14.
    Esfahlan, A., Jamei, R., Esfahlan, R.: The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 120, 349–360 (2010)CrossRefGoogle Scholar
  15. 15.
    Figueiredo, M., Burity, H., Martínez, C., Chanway, C.: Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40, 182–188 (2008)CrossRefGoogle Scholar
  16. 16.
    Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., Kawaide, H., Kamiya, Y., Yoshioka, T.: Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J. Exp. Bot. 55, 111–118 (2004)CrossRefGoogle Scholar
  17. 17.
    Hoagland, D., Arnon, D.: The water-culture method for growing plants without soil. In: Circular, California Agricultural Experimental Station, vol. 347, 2nd edn. (1950)Google Scholar
  18. 18.
    Huang, D., Ou, B., Prior, R.: The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53, 1841–1856 (2005)CrossRefGoogle Scholar
  19. 19.
    Jasim, A., Timmen, Al, Abid, W.: A.: Effect of salt stress on plant growth and free endogenous hormones of primed radish (Raphanus Sativus L.) seeds with salicylic acid. Int. J. Chemtech Res. 9, 339–346 (2016)Google Scholar
  20. 20.
    Javid, M., Sorooshzadeh, A., Moradi, F., Sanavy, S., Allahdadi, I.: The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop Sci. 5, 726–734 (2011)Google Scholar
  21. 21.
    Lao, M., Jiménez, S.: Evaluation of almond shell as a culture substrate for ornamental plants. II. Ficus benjamina. Phyton. 73, 79–84 (2004)Google Scholar
  22. 22.
    Ledbetter, C.: Shell cracking strength in almond (Prunus dulcis Mill. D.A. Webb.) and its implication in uses as a value-added product. Biores. Technol. 99, 5567–5573 (2008)CrossRefGoogle Scholar
  23. 23.
    Liaudanskas, M., Viškelis, P., Raudonis, R., Kviklys, D., Uselis, N., Janulis, V.: Phenolic composition and antioxidant activity of Malus domestica leaves. Sci. World J. 306217 (2014)Google Scholar
  24. 24.
    Lichtenthaler, H.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method. Enzymol. 148, 350–382 (1987)CrossRefGoogle Scholar
  25. 25.
    Lowry, O., Rosebrough, N., Farr, A., Randall, R.: Protein measurements with folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  26. 26.
    Maiani, G., Periago Castón, M. J., Catasta, G., Toti, E., Cambrodón, I. G., Bysted, A., Granado-Lorencio, F., Olmedilla-Alonso, B., Knuthsen, P., Valoti, M., Böhm, V., Mayer-Miebach, E., Behsnilian, D., Böhm, V.: Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 53, 194–218 (2009)CrossRefGoogle Scholar
  27. 27.
    Manukyan, A.: Effects of PAR and UV-B Radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions. Photochem. Photobiol. 89, 406–414 (2013)CrossRefGoogle Scholar
  28. 28.
    Najaphy, A., Khamssi, N., Mostafaie, A., Mirzaee, H.: Effect of progressive water deficit stress on proline accumulation and protein profiles of leaves in chickpea. Afr. J. Biotechnol. 9, 7033–7036 (2010)Google Scholar
  29. 29.
    Oliveira, I., Baptista, P., Bento, A., Pereira, J.: Arbutus unedo L. and its benefits on human health. J. Food Nutr. Res. 50, 73–85 (2011)Google Scholar
  30. 30.
    Pessarakli, M.: Response of green beans (Phaseolus vulgaris L.) to salt stress. In: Pessarakli, M. (ed.) Handbook of Plant and Crop Stress, pp. 827–842. Marcel Dekker, New York (1993)Google Scholar
  31. 31.
    Pustovoitova, T., Zhdanova, N., Zholkevich, V.: Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought. Russ. J. Plant Physiol. 51, 513–517 (2004)CrossRefGoogle Scholar
  32. 32.
    Sánchez, E., López-Lefebre, L., García, P., Rivero, R., Ruiz, J., Romero, L.: Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J. Plant Physiol. 158, 593–598 (2001)CrossRefGoogle Scholar
  33. 33.
    Sesták, Z., Castky, J., Jarvis, P.: Plant Photosynthetic production. Manual of methods. Dr. W. Junk Publishers, Hague, Netherlands (1971)Google Scholar
  34. 34.
    Shahidi, F., Zhong, Y., Wijeratne, S., Ho, C.: Almond and almond products: nutraceutical components and health effects. In Alasalvar, C., Shahidi, F. (eds.). Tree Nuts: Composition, Phytochemicals, and Health Effects. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  35. 35.
    Singer, S., Helmy, Y., Karas, A., Abou-Hadid, A.: Influences of different water-stress treatments on growth, development and production of snap bean (Phaseolus vulgaris. L.). Acta Hortic. 614, 605–611 (2002)Google Scholar
  36. 36.
    Smirnoff, N.: The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125, 27–58 (1993)CrossRefGoogle Scholar
  37. 37.
    Tsao, R., Yang, R., Young, J., Zhu, H.: Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agr. Food Chem. 51, 6347–6353 (2003)CrossRefGoogle Scholar
  38. 38.
    Türkan, İ., Bor, M., Özdemir, F., Koca, H.: Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231 (2005)CrossRefGoogle Scholar
  39. 39.
    Urrestarazu, M., Mazuela, P., Martínez, G.: Effect of substrate reutilization on yield and properties of melon and tomato crops. J. Plant Nutr. 31, 2031–2043 (2008)CrossRefGoogle Scholar
  40. 40.
    von Caemmerer, S., Farquhar, G.: Some relationships between the biochemistry of photosynthesis and gas exchange of leaves. Planta. 153, 376–387 (1981)CrossRefGoogle Scholar
  41. 41.
    Wolbang, C., Chandler, P., Smith, J., Ross, J.: Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol. 134, 769–776 (2004)CrossRefGoogle Scholar
  42. 42.
    Xie, Z., Jiang, D., Cao, W., Dai, T., Jing, Q.: Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statuses. Plant Growth Regul. 41, 117–127 (2003)CrossRefGoogle Scholar
  43. 43.
    Yasar, F., Ellialtioglu, S., Yildiz, K.: Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ. J. Plant Physiol. 55, 782–786 (2008)CrossRefGoogle Scholar
  44. 44.
    Yoo, S., Greer, D., Laing, W., McManus, M.: Changes in photosynthetic efficiency and carotenoid composition in leaves of white clover at different developmental stages. Plant Physiol. Bioch. 41, 887–893 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • I. Oliveira
    • 1
    Email author
  • A. S. Meyer
    • 2
  • A. Aires
    • 1
  • S. Afonso
    • 1
  • B. Gonçalves
    • 1
  1. 1.Centre for the Research and Technology of Agro-Environmental and Biological Sciences - CITABUniversidade de Trás-os-Montes e Alto Douro, UTADVila RealPortugal
  2. 2.Department of Chemical and Biochemical Engineering (DTU Chemical Engineering)Technical University of Denmark (DTU)LyngbyDenmark

Personalised recommendations