Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1407–1417 | Cite as

Beneficiation of Oil Shale Processing Waste: Secondary Binder Phases in Alkali Activated Composites

  • Päärn PaisteEmail author
  • Marian Külaviir
  • Peeter Paaver
  • Ivo Heinmaa
  • Signe Vahur
  • Kalle Kirsimäe
Original Paper


Oil shales are low calorific fuels leaving upon processing large amounts of solid waste with limited secondary use, mostly because of low self-cementitious properties. In this paper, alkali activation of the waste remaining after shale oil retorting in solid-heat-carrier plants was investigated to improve the cementitious properties of this waste. The formation of secondary silicate binder phases was studied in samples activated with NaOH, Na-silicate and modified Na-silicate solutions. In mixtures with Na-silicate activator highest uniaxial compressive strength and formation of a calcium-aluminium-silicate-hydrate gel was observed and characterized according to 29Si MAS-NMR and ATR-FTIR spectra as mainly consisting of polymeric silicate middle groups (Q2), and Al substituted Q3 and Q4 species indicative of geopolymerisation. NaOH activation was not sufficient to fully dissolve the amorphous phase present in the source material and only chain silicate structures with minimal crosslinkage were formed. The results indicate that the solid-heat-carrier ash from shale oil retorting exhibits geopolymeric properties on activation with Na-silicate based activators and that, with optimisation of mixing and curing conditions, provides chemically stable composite that can be used for waste stabilization or low strength construction applications.


Shale oil retorting waste Ca-rich ash Alkali-activated materials C–(A)–S–H gel Ash beneficiation 



We would like to thank Viru Keemia Grupp AS for providing the material for this study. This study was supported by Estonian Research Council Grant IUT23-7 to (I. H.).


  1. 1.
    Ots, A.: Oil shale fuel combustion. Tallinna Raamatutrükikoda, Tallinn (2006)Google Scholar
  2. 2.
    Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K.: Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. J. Hazard. Mater. 184(1–3), 567–573 (2010). CrossRefGoogle Scholar
  3. 3.
    Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T.: Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale. 29(4), 376–403 (2012). CrossRefGoogle Scholar
  4. 4.
    Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimae, K., Liira, M., Motlep, R.: Oil shale CFBC ash cementation properties in ash fields. Fuel. 93(1), 172–180 (2012). CrossRefGoogle Scholar
  5. 5.
    Talviste, P., Sedman, A., Mõtlep, R., Kirsimäe, K.: Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Manag. Res. 31(6), 641–647 (2013). CrossRefGoogle Scholar
  6. 6.
    Liira, M., Kirsimae, K., Kuusik, R., Motlep, R.: Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel. 88(4), 712–718 (2009). CrossRefGoogle Scholar
  7. 7.
    Bernal, S.A., Rodriguez, E.D., Kirchheim, A.P., Provis, J.L.: Management and valorisation of wastes through use in producing alkali-activated cement materials. J. Chem. Technol. Biotechnol. 91(9), 2365–2388 (2016). CrossRefGoogle Scholar
  8. 8.
    Provis, J.L., Palomo, A., Shi, C.J.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125 (2015). CrossRefGoogle Scholar
  9. 9.
    Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007). CrossRefGoogle Scholar
  10. 10.
    Hajimohammadi, A., van Deventer, J.S.J.: Solid reactant-based geopolymers from rice hull ash and sodium aluminate. Waste Biomass Valoriz. (2016). Google Scholar
  11. 11.
    Yliniemi, J., Tiainen, M., Illikainen, M.: Microstructure and physical properties of lightweight aggregates produced by alkali activation-high shear granulation of FBC recovered fuel-biofuel fly ash. Waste Biomass Valoriz. 7(5), 1235–1244 (2016). CrossRefGoogle Scholar
  12. 12.
    Tchakoute, H.K., Ruscher, C.H., Kong, S., Kamseu, E., Leonelli, C.: Thermal behavior of metakaolin-based geopolymer cements using sodium waterglass from rice husk ash and waste glass as alternative activators. Waste Biomass Valoriz. 8(3), 573–584 (2017). CrossRefGoogle Scholar
  13. 13.
    Hajimohammadi, A., van Deventer, J.S.J.: Characterisation of one-part geopolymer binders made from fly ash. Waste Biomass Valoriz. 8(1), 225–233 (2017). CrossRefGoogle Scholar
  14. 14.
    Zhang, Z.H., Wang, H., Zhu, Y.C., Reid, A., Provis, J.L., Bullen, F.: Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl. Clay Sci. 88–89, 194–201 (2014). CrossRefGoogle Scholar
  15. 15.
    Guo, X.L., Shi, H.S., Chen, L.M., Dick, W.A.: Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. J. Hazard. Mater. 173(1–3), 480–486 (2010). CrossRefGoogle Scholar
  16. 16.
    Guo, X.L., Shi, H.S., Dick, W.A.: Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr. Compos. 32(2), 142–147 (2010). CrossRefGoogle Scholar
  17. 17.
    Paiste, P., Liira, M., Heinmaa, I., Vahur, S., Kirsimae, K.: Alkali activated construction materials: assessing the alternative use for oil shale processing solid wastes. Constr. Build. Mater. 122, 458–464 (2016). CrossRefGoogle Scholar
  18. 18.
    Golubev, N.: Solid oil shale heat carrier technology for oil shale retorting. Oil Shale. 20(3), 324–332 (2003)Google Scholar
  19. 19.
    Clark, B.A., Brown, P.W.: Formation of ettringite from monosubstituted calcium sulfoaluminate hydrate and gypsum. J. Am. Ceram. Soc. 82(10), 2900–2905 (1999)CrossRefGoogle Scholar
  20. 20.
    Paaver, P., Paiste, P., Kirsimae, K.: Geopolymeric potential of the Estonian oil shale solid residues: petroter solid heat carrier retorting ash. Oil Shale. 33(4), 373–392 (2016). CrossRefGoogle Scholar
  21. 21.
    Fernández-Carrasco, L., Torrens-Martín, D., Morales, L.M., Martínez-Ramírez, S.: Infrared spectroscopy in the analysis of building and construction materials. In: Theophanides, T. (ed.) Infrared spectroscopy—materials science, engineering and technology. InTech, Rijeka (2012)Google Scholar
  22. 22.
    Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F., Cong, X.D.: Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3), 742–748 (1999)CrossRefGoogle Scholar
  23. 23.
    Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir. 23(17), 9076–9082 (2007). CrossRefGoogle Scholar
  24. 24.
    Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R.: (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26(16), 3789–3797 (2006). CrossRefGoogle Scholar
  25. 25.
    Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: One-part geopolymer mixes from geothermal silica and sodium aluminate. Ind. Eng. Chem. Res. 47(23), 9396–9405 (2008). CrossRefGoogle Scholar
  26. 26.
    Lee, W.K.W., van Deventer, J.S.J.: Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosificates. Langmuir. 19(21), 8726–8734 (2003). CrossRefGoogle Scholar
  27. 27.
    Myers, R.J., Bernal, S.A., San Nicolas, R., Provis, J.L.: Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir. 29(17), 5294–5306 (2013). CrossRefGoogle Scholar
  28. 28.
    Reinik, J., Heinmaa, I., Mikkola, J.P., Kirso, U.: Hydrothermal alkaline treatment of oil shale ash for synthesis of tobermorites. Fuel. 86(5–6), 669–676 (2007). CrossRefGoogle Scholar
  29. 29.
    Mägi, M., Lippmaa, E., Samoson, A., Engelhardt, G., Grimmer, A.R.: Solid-state high-resolution silicon-29 chemical shifts in silicates. J. Phys. Chem. 88, 1518–1522 (1984)CrossRefGoogle Scholar
  30. 30.
    Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., Grimmer, A.R.: Structural studies of silicates by solid state high resolution Si-29 NMR. J. Am. Chem. Soc. 102, 4889–4893 (1980)CrossRefGoogle Scholar
  31. 31.
    Andersen, M.D., Jakobsen, H.J., Skibsted, J.: Characterization of white Portland cement hydration and the C–S–H structure in the presence of sodium aluminate by Al-27 and Si-29 MAS NMR spectroscopy. Cem. Concr. Res. 34(5), 857–868 (2004). CrossRefGoogle Scholar
  32. 32.
    Faucon, P., Petit, J.C., Charpentier, T., Jacquinot, J.F., Adenot, F.: Silicon substitution for aluminum in calcium silicate hydrates. J. Am. Ceram. Soc. 82(5), 1307–1312 (1999)CrossRefGoogle Scholar
  33. 33.
    Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodriguez, J.: A model for the C–A–S–H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011). CrossRefGoogle Scholar
  34. 34.
    Sun, G.K., Young, J.F., Kirkpatrick, R.J.: The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cem. Concr. Res. 36(1), 18–29 (2006). CrossRefGoogle Scholar
  35. 35.
    Davidovits, J.: Geopolymer chemistry and applications, 3rd edn. Institut Géopolymère, Saint-Quentin (2011)Google Scholar
  36. 36.
    Lodeiro, I.G., Fernandez-Jimenez, A., Palomo, A., Macphee, D.E.: Effect on fresh C–S–H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40(1), 27–32 (2010). CrossRefGoogle Scholar
  37. 37.
    Maekawa, T.: Chemical reactions occurred in oxide glasses and their melts and evaluation by acid-base concept: NMR investigation of multi-component silicate classes. J. Ceram. Soc. Jpn. 112(1309), 467–471 (2004). CrossRefGoogle Scholar
  38. 38.
    Li, J., Hayakawa, S., Shirosaki, Y., Osaka, A.: Revisiting structure of silica gels from water glass: an H-1 and Si-29 MAS and CP-MAS NMR study. J. Sol–Gel. Sci. Technol. 65(2), 135–142 (2013). CrossRefGoogle Scholar
  39. 39.
    Faucon, P., Delagrave, A., Petit, J.C., Richet, C., Marchand, J.M., Zanni, H.: Aluminum incorporation in calcium silicate hydrates (C–S–H) depending on their Ca/Si ratio. J. Phys. Chem. B. 103(37), 7796–7802 (1999). CrossRefGoogle Scholar
  40. 40.
    Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35(9), 1688–1697 (2005). CrossRefGoogle Scholar
  41. 41.
    Komnitsas, K.A.: Potential of geopolymer technology towards green buildings and sustainable cities. 2011 Int. Conf. Green Build. Sustain. Cities. 21, 1023–1032 (2011). Google Scholar
  42. 42.
    Xu, H., Van Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59(3), 247–266 (2000). CrossRefGoogle Scholar
  43. 43.
    van Deventer, J.S.J., Provis, J.L., Duxson, P., Lukey, G.C.: Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 139(3), 506–513 (2007). CrossRefGoogle Scholar
  44. 44.
    Castel, A., Foster, S.J., Ng, T., Sanjayan, J.G., Gilbert, R.I.: Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. (2015). Google Scholar
  45. 45.
    Rüscher, C.H., Mielcarek, E., Lutz, W., Ritzmann, A., Kriven, W. M.: Weakening of alkali-activated metakaolin during aging investigated by the molybdate method and infrared absorption spectroscopy. J. Am. Ceram. Soc. 93(9), 2585–2590 (2011). CrossRefGoogle Scholar
  46. 46.
    Rüscher, C.H., Mielcarek, E.M., Wongpa, J., Jaturapitakkul, C., Jirasit, F., Lohaus, L.: Silicate-, aluminosilicate and calciumsilicate gels for building materials: chemical and mechanical properties during ageing. Eur. J. Mineral. 23(1), 111–124 (2011). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Päärn Paiste
    • 1
    Email author
  • Marian Külaviir
    • 1
  • Peeter Paaver
    • 1
  • Ivo Heinmaa
    • 2
  • Signe Vahur
    • 3
  • Kalle Kirsimäe
    • 1
  1. 1.Department of GeologyUniversity of TartuTartuEstonia
  2. 2.National Institute of Chemical Physics and BiophysicsTallinnEstonia
  3. 3.Institute of ChemistryUniversity of TartuTartuEstonia

Personalised recommendations