Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1311–1322 | Cite as

Energetic Combustion Characteristics and Environmental Impact of Moroccan Biomass Wastes and Their Solid Biofuel

  • Allouch MalikaEmail author
  • Alami Mohammed
  • Yannick Guhel
Original Paper


The three most important biomass sources in Morocco, namely almond shells A0, acorn cups C0, nut shells N0 and their derived solid biofuel respectively A400, C400 and N400 were evaluated with regards to their energetic, combustion and structural characteristics and for their environmental impact. The solid biofuel samples were produced by slow pyrolysis at a temperture of 400 °C for a reaction time of 2 h. Properties, such as combustion process, combustion index, ignition index, calorific value, chemical composition and structural characteristics of biomass wastes and their solid biofuel were determined.The results showed that solid biofuel had better fuel qualities than their parent biomasses, the combustion properties of solid biofuel are influenced by its structure, in fact the more ordered solid biofuel was the less reactive and that in comparison with the studied biofuels, the solid biofuel derived from almond shells was the most suitable for energy generation by combustion.


Energy Solid biofuel Pyrolysis Combustion Fuel characteristics Impact environmental 



The authors are very thankful to the laboratory LUSAC, Caen University for providing the facilities and for its constant encouragement. The authors are also grateful to Mr.GUALOUS Hamid for his precious help.


  1. 1.
    Ravindranath, N.H., Hall, D.O.: Biomass, energy, and environment a developing country perspective from India. Oxford University Press, Oxford (1995)Google Scholar
  2. 2.
    Campbell, I.: Biomass catalysts and liquid fuels. Technomic Publishing Co. Inc, Lancaster (1983)Google Scholar
  3. 3.
    Panepinto, D., Genon, G.: Biomass thermal treatment: energy recovery, environmental compatibility and determination of external cost. Waste Biomass Valorization. 3(2), 197–206 (2012)CrossRefGoogle Scholar
  4. 4.
    Panepinto, D., Viggiano, F., Genon, G.: Evaluation of environmental compatibility for a biomass plant. Waste Biomass Valorization. 5(5), 759–772 (2014)CrossRefGoogle Scholar
  5. 5.
    Abdullah, H., Wu, H.: Biochar as a fuel: 1. properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels. 23, 4174–4181 (2009)CrossRefGoogle Scholar
  6. 6.
    Nachenius, R.W., Ronsse, F., Venderbosch, R.H., Prins, W.: Biomass pyrolysis. Adv. Chem. Eng. 42, 75–139 (2013)CrossRefGoogle Scholar
  7. 7.
    Lehmann, J.: Bio-energy in the black. Front Ecol Environ. 5(7), 381–387 (2007)CrossRefGoogle Scholar
  8. 8.
    Yi, Q., Qi, F., Cheng, G., Zhang, Y., Xiao, B., Hu, Z., Liu, S., Cai, H., Xu, S.: Thermogravimetric analysis of co-combustion of biomass and biochar. Therm Anal Calorim (2013). Google Scholar
  9. 9.
    Al-Wabel, M.I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., Usman, A.R.A.: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 131, 374–379 (2013)CrossRefGoogle Scholar
  10. 10.
    Ozcimen, D., Ersoy-Mericboyu, A.: Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy. 35, 1319–1324 (2010)CrossRefGoogle Scholar
  11. 11.
    Apaydin-Varol, E., Pütün, E., Pütün, A.E.: Slow pyrolysis of pistachio shell. Fuel. 86, 1892–1899 (2007)CrossRefGoogle Scholar
  12. 12.
    Hmid, A., Mondelli, D., Fiore, S., Fanizzi, F.P., Chami, Al, Dumontet, Z.: S. : Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass Bioenergy. 71, 330–339 (2014)CrossRefGoogle Scholar
  13. 13.
    Ministère de l’Agriculture et de la Pêche Maritime : Produits du terroir du Maroc. Catalogue National, Edition Avril 2011Google Scholar
  14. 14.
    Planetoscope. Production mondiale d’amandes. Accessed 18 January 2016
  15. 15.
    Serrar, M.: Le noyer, arbre fruitier et forestier. Arboriculture du Maghreb (2017)Google Scholar
  16. 16.
    ABOUROUH, M.: le grand livre de la forêt marocaine. Pierre Mardaga, Sprimant-Belgique (1999)Google Scholar
  17. 17.
    Agirre, I., Griessacher, T., Rösler, G., Antrekowitsch, J. : Production of charcoal as an alternative reducing agent from agricultural residues using a semi-continuous semi-pilot scale pyrolysis screw reactor. Fuel Process. Technol. 106, 114–121 (2013)CrossRefGoogle Scholar
  18. 18.
    Allouch, M., Noudem, J., El Fallah, J., Boukhlifi, F., Alami, M.: Pyrolysis investigation of food wastes by TG-MS-DSC technique (2015).
  19. 19.
    Shiguang, L., Shaoping, X., Shuqin, L., Yang, C., Qinghua, L.: Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. 85, 1201–1211 (2004)CrossRefGoogle Scholar
  20. 20.
    El may, Y., Jeguirim, M., Dorge, S., Trouvé, G., Said, R.: Experimental investigation on gaseous emissions from the combustion of date palm residues in laboratory scale furnace. Bioresour. Technol. 131, 94–100 (2013)CrossRefGoogle Scholar
  21. 21.
    Vamvuka, D., Sfakiotakis, S. : Combustion behaviour of biomass fuels and their blends with lignite. Thermo–chim Acta. 526, 192–199 (2011)CrossRefGoogle Scholar
  22. 22.
    Xiang-guo, L., Bao-guo, M., Li, X., Zhen-wu, H., Xin-gang, W.: Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim. Acta. 441, 79–83 (2006)CrossRefGoogle Scholar
  23. 23.
    Vamvuka, D., Sfakiotakis, S. : Combustion behaviour of biomass fuels and their blends with lignite. Thermochim. Acta. 526, 192–199 (2011)CrossRefGoogle Scholar
  24. 24.
    Guerrero, M., Ruiz, M.P., Millera, A., Alzueta, M., Bilbao, R.: Characterization of biomass chars formed under different devolatilization conditions: differences between rice husk and eucalyptus. Energy Fuels. 22, 1275–1284 (2008)CrossRefGoogle Scholar
  25. 25.
    Gong, X., Guo, Z., Wang, Z. : Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion. Reactivity Energy Fuels. 23, 4547–4552 (2009)CrossRefGoogle Scholar
  26. 26.
    Li, X.J., Hayashi, J., Li, C.Z.: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel. 85, 1700–1707 (2006)CrossRefGoogle Scholar
  27. 27.
    Assadullah, M., Zhang, S., Li, C.: Evaluation of structural features of chars from pyrolysis of biomass of different particle sizes. Fuel Process Technol. 91, 877–881 (2010)CrossRefGoogle Scholar
  28. 28.
    Fuertes, A.B., Arbestain, M.C., Sevilla, M., Maciá-Agulló, J.A., Fiol, S., López, R., et al.: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonization of corn stover. Aust J Soil Res. 48, 618–626 (2010)CrossRefGoogle Scholar
  29. 29.
    Azargohar, R., Nanda, S., Kozinski, J.A., Dalai, A. K., Sutarto, R.: Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel. 125, 90–100 (2014)CrossRefGoogle Scholar
  30. 30.
    Gil, M.V., Casal, D., Pevida, C., Pis, J.J., Rubiera, F.: :Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour. Technol. 101, 5601–5608 (2010)CrossRefGoogle Scholar
  31. 31.
    El may, Y., Jeguirim, M., Dorge, S., Trouvé, G., Said, R.: Study on the thermal behavior of different date palm residues: characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy. 44, 702–709 (2012)CrossRefGoogle Scholar
  32. 32.
    Safi, M.J., Mishra, I.M., Prasad, B.: Global degradation kinetics of pine needles in air. Thermochim. Acta. 412, 155–162 (2004)CrossRefGoogle Scholar
  33. 33.
    Grønli, M., Varhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002)CrossRefGoogle Scholar
  34. 34.
    Khan, A.A., Jong, W., Jansens, P.J., Spliethoff, H.: Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol. 90, 21–50 (2009)CrossRefGoogle Scholar
  35. 35.
    Liu, Z., Quek, A., Hoekman, S.K., Srinivasan, M.P., Balasubramanian, R.: Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour. Technol. 123, 646–652 (2012)CrossRefGoogle Scholar
  36. 36.
    Williams, A., Jones, J.M., Ma, L., Pourkashanian, M.: Pollutants from the combustion of solid biomass fuels. Prog. Energ. Combust. Sci. 38, 113–137 (2012)CrossRefGoogle Scholar
  37. 37.
    Sheng, C.: Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel. 86, 2316–2324 (2007)CrossRefGoogle Scholar
  38. 38.
    Versan Kok, M., Özgür, E.: Thermal analysis and kinetics of biomass samples. Fuel Process. Technol. 106, 739–743 (2013)CrossRefGoogle Scholar
  39. 39.
    Leroy, V., Cancellieri, D., Leoni, E.: Thermal degradation of ligno-cellulosic fuels: DSC and TGA studies. Thermochim. Acta. 451, 131–138 (2006)CrossRefGoogle Scholar
  40. 40.
    Park, S.W., Jang, C.H.: Effects of pyrolysis temperature on changes in fuel characteristics of biomass char. Energy. 39, 187–195 (2012)CrossRefGoogle Scholar
  41. 41.
    Fengel, D., Wegener, G.: Wood chemistry, ultrastructre and reactions. Walter de Gruyter, Berlin (1983)CrossRefGoogle Scholar
  42. 42.
    Tillman, D.A.: Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy. 19, 365–384 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire des Sciences et Métiers de l’IngénieurENSAM, Moulay Ismail UniversityMeknesMorocco
  2. 2.Normandie Université, UCBN, LUSAC, EA 4253Cherbourg-OctevilleFrance

Personalised recommendations