Waste and Biomass Valorization

, Volume 10, Issue 3, pp 511–520 | Cite as

Pyrolysis of Olive Mill Waste with On-line and Ex-post Analysis

  • Marcela MorvováEmail author
  • Milan Onderka
  • Marcela MorvováJr.
  • Imrich Morva
  • Vladimir Chudoba
Original Paper


Olive mill wastes constitute a serious environmental problem in the Mediterranean region due to the unique features associated with this type of agricultural waste. Therefore, it is not surprising that research efforts have been directed towards developing efficient treatment technologies including various physical–chemical processes. In this paper we present a thermo-chemical degradation method (pyrolysis) to produce biochar. The large part of work is devoted to understand the pyrolysis processes using on-line analysis of thermal parameters and chemical composition. The originality of our work resides in the on-line analysis in the form of temperature measurements during individual pyrolysis cycles as well as the whole pyrolysis process, accompanied with on-line measurements of component concentrations during the whole pyrolysis process. On-line and ex-post analysis of gas phase composition provides important information about environmental impacts of the pyrolyzing process. The concentration profiles of CO, CO2, CH4, H2 and NOX were measured at four locations within the pilot system with a high sampling frequency (every 8 s) during whole pyrolysis process. In terms of the general aspects and possible future application of pyrolysis and its products we propose a novel method capable to reduce carbon dioxide concentrations in pyrolysis gas. The average CO2 removal efficiency during the whole pyrolysis process was as high as 65%. The final product is solid proteinoid. The pyrolysis process decrease the amont of waste to 10% of input amount of material. The carbon char produced in the system may find several applications especially in the agriculture.


Pyrolysis FTIR spectra Analysis Waste oil Olive 



The authors wish to thank for support to the Slovak Research and Development Agency APVV (Project No. APVV- 0267- 06), the Slovak Grant Agency VEGA (Grant No. 1/3068/06, 1/0068/12, 1/0998/12, 1/0730/13) and the Young Researcher Grand of the Comenius University (UK/159/2012, UK/286/2012).


  1. 1.
    Stölting, B., Bolle, W.F.:Treatment processes for liquid and solid waste from olive oil production. In Proceedings of Workshop “IMPROLIVE-2000”, (Annex A1), Seville, Spain, pp. 29–35 (2000)Google Scholar
  2. 2.
    FAOSTAT data base. (2000)
  3. 3.
  4. 4.
    Durán, R.M.:Relationship between the composition and ripening of olive and quality of the oil. In Proceedings of I Intl, Sympos, on Olive Growing, Rallo, L. Universidad Autonoma de Cordoba, Acta Horticulturae p. 286 (1989)Google Scholar
  5. 5.
    Lopez, R., et al.: Land treatment of liquid wastes from the olive oil industry (Alpechin). Fresenius Envir. Bull. 1, 129–134 (1992)Google Scholar
  6. 6.
    IOOC. Olive Oil Quality Improvement, Technical Report. International Olive Oil Council: MadridGoogle Scholar
  7. 7.
    Steegmans, S.R.: Optimierung der anaeroben Verfahrenstechnik zur Reinigung von organischen hochverschmutzten Abwässern aus der Oliven Ölgewinnung; Forschungsinstitut fuer Wassertechnologie an der Aachen, RWTH (Hrsg.), Forschungsbericht AZ 101/81 der Oswald-Schulze-Stiftung: Aachen (1992)Google Scholar
  8. 8.
    Eckenfelder, W.W.: Industrial water pollution control, 2nd edn. McGraw-Hill International, New York (1989)Google Scholar
  9. 9.
    FIW (Forshungsinstitut für Wasser and Abfallwirtschaft, RWTH Aachen, Germany)–IMPROLIVE web site.
  10. 10.
    Kolaczkowski, S.T., Beltran, F.J., McLurgh, D.B., Rivas, F.J.. ., Part, B.: Wet air oxidation of phenol: Factors that may influence global kinetics. Trans. Instn. Chem. Engs. Process Saf. Environ. Protect. 75, 257–265 (1997)CrossRefGoogle Scholar
  11. 11.
    Debellefontaine, H., Chakchouk, M., Foussard, J.N., Tissot, A., Striolo, P.: Treatment of organic aqueous wastes: Wet air oxidation and wet peroxide oxidation. J. Environ. Pollut. 92(2), 155–164 (1996)CrossRefGoogle Scholar
  12. 12.
    Beltran, F.J., Kolaczkowski, S.T., Crittenden, B.D., Rivas, F.J.: Degradation of o-chlorophenol with ozone in water. Trans. Instn Chem. Eng, Part B, Process, Saf. Environ. Protect. 71, 57–65 (1993)Google Scholar
  13. 13.
    Eriksson, K.E.L., Blanchette, R.A., Ander, P.: Biodegradation of lignin. In: Timmel, T.E. (ed.) Microbial and enzymatic degradation of wood and wood components, pp. 215–232. Springer, Berlin (1990)CrossRefGoogle Scholar
  14. 14.
    Davis, M. L., Cornwell, D. A.: Introduction to environmental engineering, 2nd edn.; McGraw-Hill Int, New York (1991)Google Scholar
  15. 15.
    Encinar, J. M., Beltran, F. J., Bernalte, A., Biro, A., Gonzales, J. F.: Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy 11(5), 397409 (1996)CrossRefGoogle Scholar
  16. 16.
    Vitolo, S., Petarca, L., Bresci, B.: Treatment of olive oil industry wastes. Bioresour. Technol. 67, 129–137 (1999)CrossRefGoogle Scholar
  17. 17.
    Pütün, A. E., Uzun, B., Apaydin, E., Pütün, E.: Bio-oil from olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Process. Technol. 87, 25–32 (2005)CrossRefGoogle Scholar
  18. 18.
    Jauhiainen, J., Martin-Gullon, I., Conesa, J. A., Font, R.: Emissions from pyrolysis and combustion of olive oil solid waste. J. Anal. Appl. Pyrolysis 74, 512–517 (2005)CrossRefGoogle Scholar
  19. 19.
    Taralas, G., Kontominas, M. G.: Pyrolysis of solid residues commencing from the olive oil food industry for potential hydrogen production. J. Anal. Appl. Pyrolysis 76, 109–116 (2006)CrossRefGoogle Scholar
  20. 20.
    Demiral, I., Şensöz, S.: The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Bioresour. Technol. 99, 8002–8007 (2008)CrossRefGoogle Scholar
  21. 21.
    Encinar, J. M., Gonzaález, J. F., Martínez, G., Román, S.: Catalytic pyrolysis of exhausted olive oil waste. J. Anal. Appl. Pyrolysis 85, 197–203 (2009)CrossRefGoogle Scholar
  22. 22.
    Morvová, M.: Dc corona discharges in CO2-air and CO-air mixtures for various electrode materials. J. Phys. D 31(15), 1865–1874 (1998)CrossRefGoogle Scholar
  23. 23.
    Morvová, M.: The influence of water vapour and temperature on depletion of carbon monoxide in D.C. corona discharg. Czech. J. Phys. 49(12), 1703–1719 (1999)CrossRefGoogle Scholar
  24. 24.
    Morvová, M., Morva, I., Janda, M., Hanic, F., Lukáč, P.: Combustion and carbonisation exhaust utilisation in electric discharge and its relation to prebiotic chemistry. Int. J. Mass Spectr. 223–224(1–3), 613–625 (2003)CrossRefGoogle Scholar
  25. 25.
    Morvová, M., Morva, I., Hanic, F.: Greenhouse Gas Control Technologies, Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Ed. B.Elliasson, Riemer, P., Wokaun, A., Elsevier Science, Oxford, UK, ISBN: 008-043018-X, pp. 137–142 (1999)Google Scholar
  26. 26.
    Morvová, M., Morva, I., Hanic, F.: Plasma processes and polymers. d Agostino, R., Favia, P., Oehr, C., Wertheimer, M.R. (eds.), ISDN 3-527-40487-2, Wiley, Hoboken pp. 403–412 (2005)Google Scholar
  27. 27.
    Morvová, M., Hanic, F., Morva, I.: Plasma technologies for reducing CO2 emissions from combustion exhaust with toxic admixtures to utilisable products. Thermal Anal. Calorimetry 61(1), 273–287 (2000)CrossRefGoogle Scholar
  28. 28.
    Hanic, F., Morvová, M., Morva, I.: Thermochemical aspects of the conversion of the gaseous system CO2-N0-H2O into a solid mixture of amino acids. Thermal Anal. Calorimetry. 60(3), 1111–1121 (2000)CrossRefGoogle Scholar
  29. 29.
    Janda, M., Machala, Z., Morvová, M., Morva, I.: Study of plasma induced chemistry by DC discharges above water surface in CO2/N2/H2O Mixture. Orig. Life Evol. Biospheres. 38(1), 23–35 (2008)CrossRefGoogle Scholar
  30. 30.
    Gmucová, K., Morvová, M., Kliman, Havránek E., Košinár, J., Kunecová, I., Malakhov, D., Morva, A.I., Anisimov Yu.S., Siváček, I., Sýkorová, I., Šatka, M.A.: Carbonized waste for the cut down of environmental pollution with heavy metals. Phys. Part. Nucl. Lett. 8(4), 405–411 (2011)CrossRefGoogle Scholar
  31. 31.
    Svetková, K., Henselová, M., Morvová, M.: Effect of carbonization product as additive on the Germination, growth and yield parameters of agricultural crops. Acta Agronomic Hungaric 53(3), 241–250 (2005)CrossRefGoogle Scholar
  32. 32.
    Russell, S.H., Turrion-Gomez, J.L., Meredith, W., Langston, P., Snape, C.E.: Increased charcoal yield and production of lighter oils from the slow pyrolysis of biomass. J. Anal. Appl. Pyrolysis 124, 536–541 (2017)CrossRefGoogle Scholar
  33. 33.
    Cha, J.S., Park, S.H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., Park, Y.-K.: Production and utilization of biochar: a review. J. Ind. Eng. Chem. 40, 1–15 (2016)CrossRefGoogle Scholar
  34. 34.
    Lam, S.S., Liew, R.K., Wong, Y.M., Yek, N.Y.P., Ma, N.L., Lee, C.L., Chase, H.A.: Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J. Cleaner Prod. 162, 1376–1387 (2017)CrossRefGoogle Scholar
  35. 35.
    Lam, S.S., Liew, R.K., Wong, Y.M., Azwar, E., Jusoh, A., Wahi, R.: Activated carbon for catalyst support from microwave pyrolysis of orange Peel. Waste Biomass Valorizat. 1–11 (2016)Google Scholar
  36. 36.
    Lam, S.S., Mahari, W.A.W., Jusoh, A., Chong, C.T., Lee, C.L., Chase, H.A.: Pyrolysis using microwave absorbents as reaction bed: an improved approach to transform used frying oil into biofuel product with desirable properties. J Clean Prod. 147, 263–272 (2017)CrossRefGoogle Scholar
  37. 37.
    Lam, S.S., Liew, R.K., Lim, X.Y., Ani, F.N., Jusoh, A.: Fruit waste as feedstock for recovery by pyrolysis technique. Int. Biodeterior. Biodegrad. 113, 325–333 (2016)CrossRefGoogle Scholar
  38. 38.
    Wan Mahari, W., Zainuddin, N., Wan Nik, W., Chong, C.S.: LamPyrolysis recovery of waste shipping oil using microwave heating. Energies 9(10), 780 (2016)CrossRefGoogle Scholar
  39. 39.
    Lam, S.S., Wan, W.A., Mahari, C.K., Cheng, R., Omar, C.T., Chong, H.A.: Chase recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon Energy. 115, 791–799 (2016)Google Scholar
  40. 40.
    Lam, S.S., Chase, H.A.: A review on waste to energy processes using microwave pyrolysis. Energies. 5, 4209–4232 (2012)CrossRefGoogle Scholar
  41. 41.
    Lam, S.S., Liew, R.K., Jusoh, A., Chong, C.T., Ani, F.N., Chase, H.A., Howard, A.: Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew. Sustain. Energy Rev. 53, 41–753 (2016)CrossRefGoogle Scholar
  42. 42.
    Lam, S.S., Liew, R.K., Cheng, C.K., Chase, H.A.: Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl. Catal. B 176–177, 601–617 (2015)Google Scholar
  43. 43.
    Lam, S.S., Russel, A.D., Chase, A.: Pyrolysis using microwave heating: a sustainable process for recycling used car engine oil. Ind. Eng. Chem. Res. 49(21), 10845–10851 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics, Physics and InformaticsComenius University in BratislavaBratislavaSlovakia

Personalised recommendations