Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 1065–1082 | Cite as

Acclimation Process for Enhancing Polyhydroxyalkanoate Accumulation in Activated-Sludge Biomass

  • Fernando Morgan-SagastumeEmail author
  • Francesco Valentino
  • Markus Hjort
  • Giulio Zanaroli
  • Mauro Majone
  • Alan Werker
Original Paper

Abstract

A strategy was evaluated for conditioning activated sludge biomass to a new substrate whereby the polyhydroxyalkanoate (PHA) accumulation capacity of the biomass was enhanced based on a series of aerobic feast–famine acclimation cycles applied prior to PHA accumulation. Different biomass types enriched during the treatment of municipal wastewater at laboratory, pilot, and full scales were exposed to aerobic feast–famine acclimation cycles at different feast-to-famine ratios with an acetate–propionate mixture (laboratory scale), acetate (pilot scale), and fermented waste–sludge centrate (pilot scale). A sevenfold increase in specific PHA storage rates and 20% increase in substrate utilization rates were observed during acclimation cycles (laboratory acetate–propionate). Biomass acclimation led to more than doubling of the specific substrate utilization rates, PHA storage rates, biomass PHA contents, and specific PHA productivities (per initial biomass) during PHA accumulation. The biomass PHA contents were found to increase due to acclimation from 0.19 to 0.34 (laboratory acetate–propionate), 0.39 to 0.46 (pilot acetate) and 0.19 to 0.25 gPHA/gVSS (pilot centrate). A similar bacterial community structure during acclimation indicated that a physiological rather than a genotypic adaptation occurred in the biomass. The physiological state of the biomass at the start of PHA accumulation was deemed significant in the subsequent PHA-accumulation performance. Positive acclimation trends can be monitored by measuring the relative increase in feast substrate utilization or respiration rates with respect to those of the first acclimation cycle.

Keywords

PHA production Feast–famine Mixed cultures Adaptation Physiological state Substrate 

Notes

Acknowledgements

This work was partially funded by the EU ROUTES project (Contract No. 265156, FP7 2007–2013, THEME [ENV.2010.3.1.1-2] Innovative system solutions for municipal sludge treatment and management).

References

  1. 1.
    Kleerebezem, R., Joosse, B., Rozendal, R., Van Loosdrecht, M.C.M.: Anaerobic digestion without biogas? Rev. Environ. Sci. Biotechnol. 14(4), 787–801 (2015)CrossRefGoogle Scholar
  2. 2.
    Tyagi, V.K., Lo, S.L.. Sludge: A waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev. 25(71), 708–728 (2013). doi: 10.1016/j.rser.2013.05.029 CrossRefGoogle Scholar
  3. 3.
    Arcos-Hernández, M., Montaño-Herrera, L., Murugan Janarthanan, O., Quadri, L., Anterrieu, S., Hjort, M., et al.: Value-added bioplastics from services of wastewater treatment. Water Pract. Technol. 10(3):546–555 (2015). http://www.iwaponline.com/wpt/010/wpt0100546.htm
  4. 4.
    Laycock, B., Halley, P., Pratt, S., Werker, A., Lant, P.: The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 38(3–4), 536–583 (2013). http://linkinghub.elsevier.com/retrieve/pii/S007967001200072X
  5. 5.
    Koller, M., Maršálek, L., de Sousa Dias, M.M., Braunegg, G.: Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 37, 24–38 (2017)CrossRefGoogle Scholar
  6. 6.
    Werker, A.G., Johansson, P.S.T., Magnusson, P.O.G.: Process for the extraction of polyhydroxyalkanoates from biomass. WO. 2014/125422, A1 (2014)Google Scholar
  7. 7.
    Valentino, F., Morgan-Sagastume, F., Campanari, S., Villano, M., Werker, A., Majone, M.: Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol. 37, 9–23 (2017). doi: 10.1016/j.nbt.2016.05.007 CrossRefGoogle Scholar
  8. 8.
    Morgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., et al.: Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci. Technol. 69(1), 177–184 (2014)CrossRefGoogle Scholar
  9. 9.
    Valentino, F., Morgan-Sagastume, F., Fraraccio, S., Corsi, G., Zanaroli, G., Werker, A., et al.: Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production. Environ. Sci. Pollut. Res. Int. 20, 7281–7294 (2015). http://www.ncbi.nlm.nih.gov/pubmed/24996948
  10. 10.
    Bengtsson, S., Karlsson, A., Alexandersson, T., Quadri, L., Hjort, M., Johansson, P., et al.: A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol. 35, 42–53 (2017). http://linkinghub.elsevier.com/retrieve/pii/S1871678416324268
  11. 11.
    Morgan-Sagastume, F., Heimersson, S., Laera, G., Werker, A., Svanström, M.: Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. J. Clean Prod. 137, 1368–1381 (2016). http://linkinghub.elsevier.com/retrieve/pii/S0959652616311337
  12. 12.
    Morgan-Sagastume, F., Hjort, M., Cirne, D., Gerardin, F., Lacroix, S., Gaval, G., et al.: Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour. Technol. 181, 78–89 (2015). doi: 10.1016/j.biortech.2015.01.046 CrossRefGoogle Scholar
  13. 13.
    Bengtsson, S., Werker, A., Visser, C., Korving, L.: PHARIO—Stepping stone to a sustainable value chain for PHA bioplastic using municipal activated sludge. Amersfoort (2017)Google Scholar
  14. 14.
    Majone, M., Dircks, K., Beun, J.: Aerobic storage under dynamic conditions in activated sludge processes. The state of the art. Water Sci. Technol. 39(1):61–73 (1999). http://www.sciencedirect.com/science/article/pii/S0273122398007768
  15. 15.
    Van Loosdrecht, M.C.M., Pot, M.A., Heijnen, J.J.: Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol. 35(1), 41–47 (1997). doi: 10.1016/S0273-1223(96)00877-3 CrossRefGoogle Scholar
  16. 16.
    Morgan-Sagastume, F.: Characterisation of open, mixed microbial cultures for polyhydroxyalkanoate (PHA) production. Rev. Environ. Sci. Biotechnol. 15(4), 1–33 (2016)CrossRefGoogle Scholar
  17. 17.
    Dionisi, D., Majone, M., Vallini, G., Gregorio, S.D., Beccari, M.: Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing. Batch Reactor. 23, 1064–1073 (2007)Google Scholar
  18. 18.
    Janarthanan, O.M., Laycock, B., Montano-Herrera, L., Lu, Y., Arcos-Hernandez, M. V., Werker, A., et al.: Fluxes in PHA-storing microbial communities during enrichment and biopolymer accumulation processes. New Biotechnol. 33(1), 61–72 (2016). doi: 10.1016/j.nbt.2015.07.007 CrossRefGoogle Scholar
  19. 19.
    Werker, A.G., Bengtsson, S.O.H., Hjort, J.M., Morgan-Sagastume, F., Majone, M., Valentino, F.: Process for enhancing polyhydroxyalkanoate accumulation in activated sludge biomass. WO 2016/020884 A1, (2016)Google Scholar
  20. 20.
    Valentino, F., Brusca, A.A., Beccari, M., Nuzzo, A., Zanaroli, G., Majone, M.: Start up of biological sequencing batch reactor (SBR) and short-term biomass acclimation for polyhydroxyalkanoates production. J. Chem. Technol. Biotechnol. 88(2), 261–270 (2013). http://doi.wiley.com/10.1002/jctb.3824
  21. 21.
    Valentino, F., Beccari, M., Fraraccio, S., Zanaroli, G., Majone, M.: Feed frequency in a Sequencing Batch Reactor strongly affects the production of polyhydroxyalkanoates (PHAs) from volatile fatty acids. New Biotechnol. 31(4), 264–275 (2014). doi: 10.1016/j.nbt.2013.10.006 CrossRefGoogle Scholar
  22. 22.
    Werker, A.G., Bengtsson, S.O.H., Karlsson, C.A.B.: Method for accumulation of polyhydroxyalkanoates in biomass with on-line monitoring for feed rate control and process termination. International Publication Number WO 2011/070544 A2, 16.06.2011., (2011)Google Scholar
  23. 23.
    Braunegg, G., Sonnleitner, B., Lafferty, R.M.: A rapid gas chromatographic method for the determination of poly-ßhydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37 (1978)Google Scholar
  24. 24.
    Werker, A.G., Johansson, P.S.T., Magnusson, P.O.G., Maurer, F.H.J., Jannasch, P.: Method for recovery of stabilized polyhydroxyalkanoates from biomass that has been usedto treat organic waste. WO 2012/022998 A1, (2012)Google Scholar
  25. 25.
    Zanaroli, G., Di Toro, S., Todaro, D., Varese, G.C., Bertolotto, A., Fava, F.: Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb Cell Fact. 9, 10 (2010)CrossRefGoogle Scholar
  26. 26.
    Gujer, W., Henze, M.: Activated sludge modeling and simulation. Water. Sci. Technol. 23, 1011–1023 (1991) Google Scholar
  27. 27.
    Valentino, F., Karabegovic, L., Majone, M., Morgan-Sagastume, F., Werker, A.: Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Res. 77, 49–63 (2015). doi: 10.1016/j.watres.2015.03.016 CrossRefGoogle Scholar
  28. 28.
    Chen, W.-M., Lin, Y.-S., Sheu, D.-S., Sheu, S.-Y.: Delftia litopenaei sp. nov., a poly-β-hydroxybutyrate-accumulating bacterium isolated from a freshwater shrimp culture pond. Int. J. Syst. 62(Pt 10), 2315–2321 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22140156
  29. 29.
    Volova, T.G., Prudnikova, S.V., Boyandin, A.N.: Biodegradable poly-3-hydroxybutyrate as a fertiliser carrier. J. Sci. Food Agric. 95, 4183–4193 (2016)CrossRefGoogle Scholar
  30. 30.
    Nikodinovic-Runic, J., Guzik, M., Kenny, S.T., Babu, R., Werker, A., O’Connor, K.E.: Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Adv. Appl. Microbiol. 84, 139–200 (2013). doi: 10.1016/B978-0-12-407673-0.00004-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Fernando Morgan-Sagastume
    • 1
    • 2
    Email author
  • Francesco Valentino
    • 3
  • Markus Hjort
    • 1
  • Giulio Zanaroli
    • 4
  • Mauro Majone
    • 3
  • Alan Werker
    • 1
    • 5
    • 6
  1. 1.Veolia Water Technologies AB (AnoxKaldnes)LundSweden
  2. 2.Waste Science and TechnologyLuleå University of TechnologyLuleåSweden
  3. 3.Department of ChemistrySapienza University of RomeRomeItaly
  4. 4.Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)University of BolognaBolognaItaly
  5. 5.School of Chemical EngineeringUniversity of QueenslandSt. LuciaAustralia
  6. 6.Promiko ABLommaSweden

Personalised recommendations