Waste and Biomass Valorization

, Volume 10, Issue 4, pp 797–803 | Cite as

Influence of Synthetic and Natural Antioxidants on the Oxidation Stability of Beef Tallow Before Biodiesel Production

  • Maurício N. Kleinberg
  • Maria A. S. Rios
  • Hugo L. B. Buarque
  • Marcelo M. V. Parente
  • Célio L. CavalcanteJr.
  • F. Murilo T. LunaEmail author
Original Paper


Beef tallow is a promising alternative as a non-edible raw material for biodiesel production, due to its lower price compared to vegetable oils such as soybean oil. The problem of using beef tallow as a raw material for biodiesel is its high acidity level, found as a consequence of hydrolysis and oxidation reactions. These degradation processes are significant in the presence of high levels of humidity and temperature, which are usually found in the storage conditions. In this study, the influence of synthetic and natural antioxidants on the oxidation stability of beef tallow was evaluated using Rancimat tests and by monitoring their acid and peroxide values over 148 days of storage in an oven. The studied synthetic and natural (cashew nut shell liquid, CNSL) antioxidants were effective to prevent oxidation of beef tallow on storage conditions. Biodiesel samples were produced from samples of beef tallow with and without antioxidants. The biodiesel samples produced from beef tallow containing BHT presented the best induction period values. The biodiesel samples produced from beef tallow containing technical CNSL (0.5 wt%) met the requirement of oxidation stability at 110 °C determined by the Brazilian specification.


Beef tallow Oxidative degradation Antioxidants Biodiesel 



The authors acknowledge financial support from CNPq, CAPES and Federal Institute of Education, Science and Technology of Ceará.


  1. 1.
    Brasil: Boletim mensal dos combustíveis renováveis. Ministério de Minas e Energia. (2017). Accessed 6 April 2017
  2. 2.
    Gui, M.M., Lee, K.T., Bhatia, S.: Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy. 33, 1646–1653 (2008). doi: 10.1016/ CrossRefGoogle Scholar
  3. 3.
    Sulistyo, H., Almeida, M.F., Dias, J.M.: Influence of synthetic antioxidants on the oxidation stability of biodiesel produced from acid raw Jatropha curcas oil. Fuel Process. Technol. 132, 133–138 (2015). doi: 10.1016/j.fuproc.2014.12.003 CrossRefGoogle Scholar
  4. 4.
    Imahara, H., Minami, E., Saka, S.: Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel. 85, 1666–1670 (2006). doi: 10.1016/j.fuel.2006.03.003 CrossRefGoogle Scholar
  5. 5.
    Santos, A.G.D.: Avaliação da estabilidade térmica e oxidativa do biodiesel de algodão, girassol, dendê e sebo bovino. Universidade Federal do Rio Grande do Norte, Natal (2010)Google Scholar
  6. 6.
    Rincón, L.E., Jaramillo, J.J., Cardona, C.A.: Comparison of feedstocks and technologies for biodiesel production: an environmental and techno-economic evaluation. Renew. Energy. 69, 479–487 (2014). doi: 10.1016/j.renene.2014.03.058 CrossRefGoogle Scholar
  7. 7.
    Jakeria, M.R., Fazal, M.A., Haseeb, A.S.M.A.: Influence of different factors on the stability of biodiesel: a review. Renew. Sustain. Energy Rev. 30, 154–163 (2014). doi: 10.1016/j.rser.2013.09.024 CrossRefGoogle Scholar
  8. 8.
    Knothe, G.: Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 88, 669–677 (2007). doi: 10.1016/j.fuproc.2007.01.005 CrossRefGoogle Scholar
  9. 9.
    McCormick, R.L., Ratcliff, M., Moens, L., Lawrence, R.: Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Process. Technol. 88, 651–657 (2007). doi: 10.1016/j.fuproc.2007.01.006 CrossRefGoogle Scholar
  10. 10.
    Xin, J., Imahara, H., Saka, S.: Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 88, 282–286 (2009). doi: 10.1016/j.fuel.2008.08.018 CrossRefGoogle Scholar
  11. 11.
    Yang, Z., Hollebone, B.P., Wang, Z., Yang, C., Landriault, M.: Factors affecting oxidation stability of commercially available biodiesel products. Fuel Process. Technol. 106, 366–375 (2013). doi: 10.1016/j.fuproc.2012.09.001 CrossRefGoogle Scholar
  12. 12.
    Mata, T.M., Cardoso, N., Ornelas, M., Neves, S., Caetano, N.S.: Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy Fuels 25, 4756–4762 (2011). doi: 10.1021/ef2010207 CrossRefGoogle Scholar
  13. 13.
    Schober, S., Mittelbach, M.: The impact of antioxidants on biodiesel oxidation stability. Eur. J. Lipid Sci. Technol. 106, 382–389 (2004). doi: 10.1002/ejlt.200400954 CrossRefGoogle Scholar
  14. 14.
    Palozza, P., Rossella, S., Picci, N., Buzzoni, L., Ciliberti, N., Natangelo, A., Manfredini, S., Vertuani, S.: Design, synthesis, and antioxidant potency of novel α-tocopherol analogues in isolated membranes and intact cells. Free Radic. Biol. Med. 44, 1452–1464 (2008). doi: 10.1016/j.freeradbiomed.2008.01.001 CrossRefGoogle Scholar
  15. 15.
    Santos, F.F.P.: Avaliação de antioxidantes aplicados à produção de biodiesel (2013)Google Scholar
  16. 16.
    Mazzetto, S.E., Lomonaco, D., Mele, G.: Óleo da castanha de caju: oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Quim. Nova. 32, 732–741 (2009). doi: 10.1590/S0100-40422009000300017 CrossRefGoogle Scholar
  17. 17.
    Trevisan, M.T.S., Pfundstein, B., Haubner, R., Würtele, G., Spiegelhalder, B., Bartsch, H., Owen, R.W.: Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem. Toxicol. 44, 188–197 (2006). doi: 10.1016/j.fct.2005.06.012 CrossRefGoogle Scholar
  18. 18.
    Lomonaco, D., Maia, F.J.N., Clemente, C.S., Mota, J.P.F., Junior, A.E.C., Mazzetto, S.E.: Thermal studies of new biodiesel antioxidants synthesized from a natural occurring phenolic lipid. Fuel 97, 552–559 (2012). doi: 10.1016/j.fuel.2012.01.059 CrossRefGoogle Scholar
  19. 19.
    Gedam, P.H., Sampathkumaran, P.S.: Cashew nut shell liquid: extraction, chemistry and applications. Prog. Org. Coat. 14, 115–157 (1986). doi: 10.1016/0033-0655(86)80009-7 CrossRefGoogle Scholar
  20. 20.
    Attanasi, O., Filippone, P., Grossi, M.: Synthesis of some phosphorus derivatives of cardanol. Phosphorus Sulfur Relat. Elem. 35, 63–65 (1988). doi: 10.1080/03086648808079365 CrossRefGoogle Scholar
  21. 21.
    Rios, M.A.S.: Síntese e Aplicabilidade de Antioxidantes derivados do Cardanol Hidrogenado. Universidade Federal do Ceará, Ceará (2008)Google Scholar
  22. 22.
    Lopes, A.A.S.: Síntese de um aditivo tiofosforado a partir do líquido da casca da castanha de caju (Anacardium occidentale Lin) (2005)Google Scholar
  23. 23.
    Mele, G., Vasapollo, G.: Fine chemicals and new hybrid materials from cardanol. Mini Rev. Org. Chem. 5, 243–253 (2008)CrossRefGoogle Scholar
  24. 24.
    American Oil Chemists’ Society: Official Methods and Recommended Practices of the AOCS. AOCS, Urbana (2009)Google Scholar
  25. 25.
    Moretto, E., Fett, R.: Tecnologia de óleos e gorduras vegetais na indústria de alimentos. Varela Editora e Livraria Ltda, São Paulo (1998)Google Scholar
  26. 26.
    Associação Brasileira de Normas Técnicas: ABNT NBR 13573, Amostragem de insumos químicos para curtimento e acabamento de couros. ABNT, Rio de Janeiro (2012)Google Scholar
  27. 27.
    American Oil Chemists’ Society: Official methods and recommended practices of the American Oil Chemists’ Society. AOCS Official method Cd 8-53. AOCS, Champaign (1990)Google Scholar
  28. 28.
    ASTM International: Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International, West Conshohocken (2016)Google Scholar
  29. 29.
    BSI British Standards: Fat and oil derivatives. Fatty acid methyl esters (FAME). In: Determination of oxidation stability (accelerated oxidation test). BSI, London (2003)Google Scholar
  30. 30.
    ASTM International: ASTM D7042-16e1. Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity). ASTM International, West Conshohocken (2016)Google Scholar
  31. 31.
    Instituto Adolfo Lutz: Normas Analíticas do Instituto Adolfo Lutz. Métodos Físico-Químicos para Análise de Alimentos. Ministério da Saúde, Agência Nacional de Vigilância Sanitária, Brasília (2005)Google Scholar
  32. 32.
    Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Identificação Espectrométrica de Compostos Orgânicos. LTC, Rio de Janeiro (2013)Google Scholar
  33. 33.
    Silverstein, R.M., Bassler, G.C., Morrill, T.: Spectrometric Identification of Organic Compounds. Wiley, New York (1991)Google Scholar
  34. 34.
    Araújo, S. V., Rocha, B.S., Luna, F.M.T., Rola, E.M., Azevedo, D.C.S., Cavalcante, C.L.: FTIR assessment of the oxidation process of castor oil FAME submitted to PetroOXY and Rancimat methods. Fuel Process. Technol. 92, 1152–1155 (2011). doi: 10.1016/j.fuproc.2010.12.026 CrossRefGoogle Scholar
  35. 35.
    Pullen, J., Saeed, K.: Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Process. Technol. 125, 223–235 (2014). doi: 10.1016/j.fuproc.2014.03.032 CrossRefGoogle Scholar
  36. 36.
    Cunha, M.E., Krause, L.C., Moraes, M.S.A., Faccini, C.S., Jacques, R.A., Almeida, S.R., Rodrigues, M.R.A., Caramão, E.B.: Beef tallow biodiesel produced in a pilot scale. Fuel Process. Technol. 90, 570–575 (2009). doi: 10.1016/j.fuproc.2009.01.001 CrossRefGoogle Scholar
  37. 37.
    Tang, H., Wang, A., Salley, S.O., Ng, K.Y.S.: The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc. 85, 373–382 (2008). doi: 10.1007/s11746-008-1208-z CrossRefGoogle Scholar
  38. 38.
    Liang, C., Schwarzer, K.: Comparison of four accelerated stability methods for lard and tallow with and without antioxidants. J. Am. Oil Chem. Soc. 75, 1441–1443 (1998). doi: 10.1007/s11746-998-0196-3 CrossRefGoogle Scholar
  39. 39.
    Loh, S.-K., Chew, S.-M., Choo, Y.-M.: Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. J. Am. Oil Chem. Soc. 83, 947–952 (2006). doi: 10.1007/s11746-006-5051-9 CrossRefGoogle Scholar
  40. 40.
    Rodrigues, F.H.A., Feitosa, J.P.A., Ricardo, N.M.P.S., França, F.C.F., Carioca, J.O.B.: Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1,4-polyisoprene. J. Braz. Chem. Soc. 17, 265–271 (2006). doi: 10.1590/S0103-50532006000200008 CrossRefGoogle Scholar
  41. 41.
    Rodrigues, F.H.A., Souza, J.R.R., França, F.C.F., Ricardo, N.M.P.S., Feitosa, J.P.A.: Thermal oligomerisation of cardanol. e-Polymers (2006). doi: 10.1515/epoly.2006.6.1.1027 Google Scholar
  42. 42.
    Pullen, J., Saeed, K.: An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16, 5924–5950 (2012). doi: 10.1016/j.rser.2012.06.024 CrossRefGoogle Scholar
  43. 43.
    Agência Nacional do Petróleo Gás Natural e Biocombustíveis: Resolução ANP No. 51-25.11.2015-DO 26.11.2015. (2017). Accessed 6 April 2017

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Maurício N. Kleinberg
    • 1
  • Maria A. S. Rios
    • 3
  • Hugo L. B. Buarque
    • 4
  • Marcelo M. V. Parente
    • 1
  • Célio L. CavalcanteJr.
    • 2
  • F. Murilo T. Luna
    • 2
    Email author
  1. 1.Programa de Pós-Graduação em Energias RenováveisInstituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus MaracanaúMaracanaúBrazil
  2. 2.Departamento de Engenharia Química, Grupo de Pesquisa em Separações por Adsorção, Núcleo de Pesquisas em LubrificantesUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de Engenharia Mecânica, Grupo de Inovações Tecnológicas e Especialidades QuímicasUniversidade Federal do CearáFortalezaBrazil
  4. 4.Departamento de Química e Meio AmbienteInstituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus FortalezaFortalezaBrazil

Personalised recommendations