Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 1043–1051 | Cite as

Co(II)-pyrophyllite as Catalyst for Phenol Oxidative Degradation: Optimization Study Using Response Surface Methodology

  • A. El Gaidoumi
  • A. Loqman
  • A. Chaouni Benadallah
  • B. El Bali
  • A. KherbecheEmail author
Original Paper

Abstract

A cobalt supported clay catalyst was elaborated by an impregnation method. It was then tested as heterogeneous catalyst for the oxidation of phenol by hydrogen peroxide. The clay used as support is the natural local pyrophyllite. Both raw and modified clays were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Response surface methodology (RSM), based on central composite design (CCD), was applied. Influences of three operating parameters, namely temperature, hydrogen peroxide concentration and catalyst amount were selected for the optimization of the heterogeneous catalytic oxidation reaction. Based on analysis of variance (ANOVA), the quadratic model fits well with the experimental results. The maximum oxidation efficiency was found to be 70.18% under the optimum conditions of operational parameters (T = 50 °C; [H2O2] = 6.4 mmol L−1; catalyst amount = 1.7 g L−1). After 5.5 h of reaction under the optimum conditions, it was possible to degrade the phenol totally and with 75.21% of mineralization. This time is also sufficient for detoxification of polluted solution.

Keywords

Supported clay Catalyst Oxidation Phenol Response surface Optimization 

Notes

Acknowledgements

The authors thank Professor José Antonio Navío Santos of the “Instituto de Ciencia de Materiales de Sevilla (ICMS), Consejo Superior de Investigaciones Científicas CSIC”, University of Seville (Spain) for XPS analysis.

Compliance with Ethical Standards

Conflict of interest

All authors of the present manuscript declare that they have no conflict of interest.

References

  1. 1.
    Osegueda, O., Dafinov, A., Llorca, J., Medina, F., Sueiras, J.: Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors. Chem. Eng. J. 262, 344–355 (2015)CrossRefGoogle Scholar
  2. 2.
    Kannan, S., Dubey, A., Knozinger, H.: Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. J. Catal. 231, 381–392 (2005)CrossRefGoogle Scholar
  3. 3.
    Zhou, S., Qian, Z., Sun, T., Xu, J., Xia, C.: Catalytic wet peroxide oxidation of phenol over Cu-Ni-Al hydrotalcite. Appl. Clay. Sci. 53, 627–633 (2011)CrossRefGoogle Scholar
  4. 4.
    Wang, S.: A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes. Pigm. 76, 714–720 (2008)CrossRefGoogle Scholar
  5. 5.
    Cao, S., Yeung, K.L., Kwan, J.K.C., To, P.M.T., Yu, S.C.T.: An investigation of the performance of catalytic aerogel filters. Appl. Catal. B: Environ. 86, 127–136 (2009)CrossRefGoogle Scholar
  6. 6.
    Botas, J.A., Melero, J.A., Martínez, F., Pariente, M.I.: Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solution in a fixed bed reactor. Catal. Today. 149, 334–340 (2010)CrossRefGoogle Scholar
  7. 7.
    Martins, R.C., Quinta-Ferreira, R.M.: Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: comparative studies. Chem. Eng. Sci. 66, 3243–3250 (2011)CrossRefGoogle Scholar
  8. 8.
    Melero, J.A., Martínez, F., Botas, J.A., Molina, R., Pariente, M.I.: Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water. Res. 43, 4010–4018 (2009)CrossRefGoogle Scholar
  9. 9.
    Andreozzi, R., Caprio, C., Insola, A., Marotta, R.: Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 53, 51–59 (1999)CrossRefGoogle Scholar
  10. 10.
    Pontes, R.F.F., Moraes, J.E.F., Machulek, A., Pinto, J.M.: A mechanistic kinetic model for phenol degradation by the Fenton process. J. Hazard. Mater. 176, 402–413 (2010)CrossRefGoogle Scholar
  11. 11.
    Neyens, E., Baeyens, J.: A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98, 33–50 (2003)CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Zhi, L., Li, H., Long, H., Zhao, W.: Process integration of halogenations and oxidation for recovery and removal of phenols from high strength phenolic waste water. Chem. Eng. J. 229, 99–104 (2013)CrossRefGoogle Scholar
  13. 13.
    Bui, T.X., Kang, S.Y., Lee, S.H., Choi, H.: Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J. Hazard. Mater. 193, 156–163 (2011)CrossRefGoogle Scholar
  14. 14.
    Huang, D.L., Wang, R.Z., Liu, Y.G., Zeng, G.M., Lai, C., Xu, P., Lu, B.A., Xu, J.J., Wang, C., Huang, C.: Application of molecularly imprinted polymers in wastewater treatment: a review. Environ. Sci. Pollut. Res. Int. 22, 963–977 (2015)CrossRefGoogle Scholar
  15. 15.
    Annachhatre, A.P., Gheewala, S.H.: Biodegradation of chlorinated phenolic compounds. Biotechnol. Adv. 14, 35–56 (1996)CrossRefGoogle Scholar
  16. 16.
    Rzeszutek, K., Chow, A.: Extraction of phenols using polyurethane membrane. Talanta. 46, 507–519 (1998)CrossRefGoogle Scholar
  17. 17.
    Zrnčević, S., Gomzi, Z. C.W.P.O.: An environmental solution for pollutant removal from wastewater. Ind. Eng. Chem. Res. 44, 6110–6114 (2005)CrossRefGoogle Scholar
  18. 18.
    Perathoner, S., Centi, G.: Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial steams. Top. Catal. 33, 207–224 (2005)CrossRefGoogle Scholar
  19. 19.
    Hofmann, J., Freier, U., Wecks, M., Demund, A.: Degradation of halogenated organic compounds in ground water by heterogeneous catalytic oxidation with hydrogen peroxide. Top. Catal. 33, 243–247 (2005)CrossRefGoogle Scholar
  20. 20.
    Liou, R.M., Chen, S.H., Hung, M.Y., Hsu, C.S., Lai, J.Y.: Fe(III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere. 59, 117–125 (2005)CrossRefGoogle Scholar
  21. 21.
    Guélou, E., Barrault, J., Fournier, J., Tatibouet, J.M.: Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Appl. Catal. B: Environ. 44, 1–8 (2003)CrossRefGoogle Scholar
  22. 22.
    Moura, F.C.C., Araujo, M.H., Costa, R.C.C., Fabris, J.D., Macedo, W.A.A., Lago, R.M.: Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere. 60, 1118–1123 (2005)CrossRefGoogle Scholar
  23. 23.
    Cesar Teixeira, L.A., Vieira Junior, N.D., Yokoyama, L., da Fonseca, F.V.: Degradation of phenol in mine waters using hydrogen peroxide and commercial steel wool. Int J Miner Process. 138, 15–19 (2015)CrossRefGoogle Scholar
  24. 24.
    Yan, Y., Jiang, S., Zhang, H.: Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor. Sep. Purif. Technol. 133, 365–374 (2014)CrossRefGoogle Scholar
  25. 25.
    Taran, O.P., Zagoruiko, A.N., Ayusheev, A.B., Yashnik, S.A., Prihod’ko, R.V., Ismagilov, Z.R., Goncharuk, V.V., Parmon, V.N.: Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study. Chem. Eng. J. 282, 108–115 (2015)CrossRefGoogle Scholar
  26. 26.
    Shukla, P., Wang, S., Singh, K., Ang, H.M., Tadé, M.O.: Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. App. Catal. B: Environ. 99, 163–169 (2010)CrossRefGoogle Scholar
  27. 27.
    Bel Hadjltaief, H., Da Costa, P., Beaunier, P., Gálvez, M.E., Ben Zina, M.: Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Appl. Clay. Sci. 91–92, 46–54 (2014)CrossRefGoogle Scholar
  28. 28.
    Garrido-Ramírez, E.G., Marco, J.F., Escalona, N., Ureta-Zañartu, M.S.: Preparation and characterization of bimetallic Fe-Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Micropor. Mesopor. Mater. 225, 303–311 (2016)CrossRefGoogle Scholar
  29. 29.
    Shiraga, M., Kawabata, T., Li, D., Shishido, T., Komaguchi, K., Sano, T., Takehira, K.: Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite. Appl. Clay. Sci. 33, 247–259 (2006)CrossRefGoogle Scholar
  30. 30.
    El Gaidoumi, A., Benabdallah, A.C., El Bali, B., Kherbeche, A.: Synthesis and characterization of zeolite HS using natural pyrophyllite as New Clay Source. Arab. J. Sci. Eng. doi: 10.1007/s13369-017-2768-8.
  31. 31.
    Eisenberg, G.: Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed. 15, 327–328 (1943)CrossRefGoogle Scholar
  32. 32.
    Bavcon Kralj, M., Trebše, P., Franko, M.: Applications of bioanalytical techniques in evaluating advanced oxidation processes in pesticide degradation. Trends Anal Chem. 26, 1020–1031 (2007)CrossRefGoogle Scholar
  33. 33.
    Chaudhary, N., Balomajumder, C.: Optimization study of adsorption parameters for removal of phenol on aluminum impregnated fly ash using response surface methodology. J. Taiwan. Inst. Chem. Eng. 45, 852–859 (2014)CrossRefGoogle Scholar
  34. 34.
    Holan, Z.R., Volesky, B.: Biosorption of lead and nickel by biomass of marine algae. Biotechnol. Bioeng. 43, 1001–1009 (1994)CrossRefGoogle Scholar
  35. 35.
    Baçaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Luu, R.P.T., Maldonado-Hodar, F.J., Rivera-Utrilla, J., Moreno-Castilla, C.: Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon. 39, 425–432 (2001)CrossRefGoogle Scholar
  36. 36.
    Zulkali, M.M.D., Ahmad, A.L., Norulakmal, N.H.: Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Bioresour. Technol. 97, 21–25 (2006)CrossRefGoogle Scholar
  37. 37.
    Shifu, C., Wei, L., Sujuan, Z., Yinghao, C.: Preparation and activity evaluation of relative p-n junction photocatalyst Co-TiO2/TiO2. J. Sol. Gel. Sci. Technol. 54, 258–267 (2010)CrossRefGoogle Scholar
  38. 38.
    Chowdhury, P.R., Bhattacharyya, K.G.: Synthesis and characterization of Co/Ti layered double hydroxide and its application as a photocatalyst for degradation of aqueous Congo Red. RCS. Adv. 5, 92199–92206 (2015)Google Scholar
  39. 39.
    Jeong, B.S., Heo, Y.W., Norton, D.P., Kelly, J.G., Rairigh, R., Hebard, A.F., Budai, J.D., Park, Y.D.: Spatial distribution and electronic state of Co in epitaxial anatase CoxTi1–xO2 thin films grown by reactive sputtering. Appl. Phys. Lett. 84, 2608–2610 (2004)CrossRefGoogle Scholar
  40. 40.
    Huang, C., Liu, X., Liu, Y., Wang, Y.: Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol–gel template synthesis. Chem. Phys. Lett. 432, 468–472 (2006)CrossRefGoogle Scholar
  41. 41.
    Zubareva, N.D., Tkachenko, O.P., Telegina, N.S., Dorokhin, G.V., Klabunovsky, E.I., Stakheev, A.Y., Kustov, L.M.: XPS study of the surface composition of modified nickel-cobalt powder catalysts for enantioselective ethyl acetoacetate hydrogenation. Russ. Chem. Bull. 56, 2344–2347 (2007)CrossRefGoogle Scholar
  42. 42.
    Li, H., Li, Y., Xiang, L., Huang, Q., Qiu, J., Zhang, H., Sivaiah, M.V., Baron, F., Barrault, J., Petit, S., Valange, S.: Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation. J. Hazard. Mater. 287, 32–41 (2015)CrossRefGoogle Scholar
  43. 43.
    Ayodele, O.B., Lim, J.K., Hameed, B.H.: Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modeling. Chem. Eng. J. 197, 181–192 (2012)CrossRefGoogle Scholar
  44. 44.
    Almeida, L.C., Garcia-Segura, S., Bocchi, N., Brillas, E.: Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: process optimization by response surface methodology. Appl. Catal. B: Environ. 103, 21–30 (2011)CrossRefGoogle Scholar
  45. 45.
    Herney-Ramirez, J., Lampinen, M., Vicente, M.A., Costa, C.A., Madeira, L.M.: Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind. Eng. Chem. Res. 47, 284–294 (2008)CrossRefGoogle Scholar
  46. 46.
    Torrades, F., García-Montaño, J.: Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions. Dyes. Pigm. 100, 184–189 (2014)CrossRefGoogle Scholar
  47. 47.
    Long, A., Zhang, H., Lei, Y.: Surfactant flushing remediation of toluene contaminated soil: optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Sep. Purif. Technol. 118, 612–619 (2013)CrossRefGoogle Scholar
  48. 48.
    Arslan-Alaton, I., Tureli, G., Olmez-Hanci, T.: Optimization of the photo-Fenton like process for real synthetic azo dye production wastewater treatment using response surface methodology. Photochem. Photobiol. Sci. 8, 628–638 (2009)CrossRefGoogle Scholar
  49. 49.
    Xu, T., Liu, Y., Ge, F., Liu, L., Ouyang, Y.: Application of response surface methodology for optimization of azocarmine B removal by heterogeneous photo-Fenton process using hydroxyl-iron-aluminum pillared bentonite. Appl. Surf. Sci. 280, 926–932 (2013)CrossRefGoogle Scholar
  50. 50.
    Xu, H.Y., Qi, S.Y., Li, Y., Zhao, Y., Li, J.W.: Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: optimization by response surface methodology. Environ. Sci. Pollut. Res. 20, 5764–5772 (2013)CrossRefGoogle Scholar
  51. 51.
    Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., Oturan, M.A.: Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode. Chemosphere. 87, 614–620 (2012)CrossRefGoogle Scholar
  52. 52.
    Eberhardt, M.K., Santos, C., Soto, M.A.: Formation of hydroxyl radicals and Co3+ in the reaction of Co2+ EDTA with hydrogen peroxide. Catalytic effect of Fe3+. BBA-Gen Subj. 1157, 102–106 (1993)CrossRefGoogle Scholar
  53. 53.
    Araña, J., Doña-Rodriguez, J.M., Portillo-Carrizo, D., Fernandez-Rodriguez, C., Pérez-Peña, J., González Díaz, O., Navíoc, J.A., Macías, M.: Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. App. Catal. B: Environ. 100, 346–354 (2010)CrossRefGoogle Scholar
  54. 54.
    Zazo, J.A., Casas, J.A., Mohedano, A.F., Gilarranz, M.A., Rodríguez, J.J.: Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ. Sci. Technol. 39, 9295–9302 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • A. El Gaidoumi
    • 1
  • A. Loqman
    • 1
  • A. Chaouni Benadallah
    • 1
  • B. El Bali
    • 1
  • A. Kherbeche
    • 1
    Email author
  1. 1.Laboratory of Catalysis, Materials and Environment, Higher School of TechnologySidi Mohamed Ben Abdellah UniversityFezMorocco

Personalised recommendations