Waste and Biomass Valorization

, Volume 10, Issue 4, pp 1021–1027 | Cite as

Evaluation of Autothermal Peat Pyrolysis Realization for Fuel Processing Technologies

  • Roman TabakaevEmail author
  • Alexander Astafev
  • Yury Dubinin
  • Nikolay Yazykov
  • Vadim Yakovlev
Original Paper


In a number of countries peat plays an important role in the energy balance. However, the share of peat-generated power on a worldwide scale does not exceed 0.028%. The reason for such a low involvement of peat in the energy balance is a number of properties hindering its use for power production. Pyrolysis is a promising field of using peat for power generation, but the need to supply a large amount of heat for it to occur is the barrier to mainstreaming the technologies of pyrolysis. In this work we study the composition of peat from two deposits in Tomsk region and the products of their pyrolysis as well as exothermic effects in order to identify the conditions necessary for autothermal pyrolysis. We used the methods of physical experiment and differential thermal analysis to explore the total heat of pyrolysis and assessed the feasibility of autothermal pyrolysis by calculation. The research has shown that with a moisture content of < 8.85% the pyrolysis of peat sample No. 2 is autothermal. The pyrolysis of peat sample No. 1 cannot be autothermal even if the sample is dried. This stems from the high content of mineral matter, which includes a large amount of carbonates.


Peat Low-temperature pyrolysis Differential thermal analysis Heat effect Autothermal process 



The research is funded from RFBR (Grant Number 16-38-50124). The experimental calculations are carried out at Tomsk Polytechnic University (Grant No. SAU-2016/25) within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program Grant.


  1. 1.
    Popel’, O.S., Reutov, B.F., Antropov, A.P.: Prospective lines of using renewable energy sources in centralized and independent power systems. Therm. Eng. (2010). doi: 10.1134/S0040601510110017 Google Scholar
  2. 2.
    Rehman, S., Al-Hadhrami, L.M.: Study of a solar PV—diesel—battery hybrid power system for a remotely located population near Rafha, Saudi Arabia. Energy (2010). doi: 10.1016/ Google Scholar
  3. 3.
    Kaldellis, J.K., Kavadias, K.A.: Cost-benefit analysis of remote hybrid wind-diesel power stations: case study Aegean Sea islands. Energy Policy (2007). doi: 10.1016/j.enpol.2006.04.012 Google Scholar
  4. 4.
    Kontorovich, A.E., Epov, M.I., Eder, L.V.: Long-term and medium-term scenarios and factors in world energy perspectives for the 21st century. Russ. Geol. Geophys. (2014). doi: 10.1016/j.rgg.2014.05.002 Google Scholar
  5. 5.
    Kleineidam, P., Dörr, J.: Renewable power generation 2015: the latest World-Market Status. Renew. Energy Focus (2015). doi: 10.1016/j.ref.2015.10.027 Google Scholar
  6. 6.
    Meade, N., Islam, T.: Modelling European usage of renewable energy technologies for electricity generation. Technol. Forecast. Soc. Chang. (2015). doi: 10.1016/j.techfore.2014.03.007 Google Scholar
  7. 7.
    Venkata Mohan, S., Nikhil, G.N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M.V., Kumar, A.N., Sarkar, O.: Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour. Technol. (2016). doi: 10.1016/j.biortech.2016.03.130 Google Scholar
  8. 8.
    Bezrukikh, P.P., Karabanov, S.M.: Renewable energy efficiency. In: International Conference on Environment and Electrical Engineering (EEEIC 2016), Florence, 2016. doi: 10.1109/EEEIC.2016.7555545
  9. 9.
    Izadyar, N., Ong, H.C., Chong, W.T., Leong, K.Y.: Resource assessment of the renewable energy potential for a remote area: a review. Renew. Sustain. Energy Rev. (2016). doi: 10.1016/j.rser.2016.05.005 Google Scholar
  10. 10.
    Laitinen, S., Laitinen, J., Fagernäs, L., Korpijärvi, K., Korpinen, L., Ojanen, K., Aatamila, M., Jumpponen, M., Koponen, H., Jokiniemi, J.: Exposure to biological and chemical agents at biomass power plants. Biomass Bioenergy (2016). doi: 10.1016/j.biombioe.2016.06.025 Google Scholar
  11. 11.
    Grishin, A.M., Zima, V.P., Kasymov, D.P.: On the deepening mechanism of the site of peat combustion. J. Eng. Phys. Thermophys. (2013). doi: 10.1007/s10891-013-0920-1 Google Scholar
  12. 12.
    Boyarko, G.Yu., Bernatonis, P.V., Bernatonis, V.K.: The peat industry of Russia and the world. The analysis of the current state and development prospects. Min. Resour. Russ. Econ. Manag. 6, 56–61 (2014) (in Russian)Google Scholar
  13. 13.
    Theis, M., Skrifvars, B.-J., Hupa, M., Tran, H.: Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1: deposition rates. Fuel (2006). doi: 10.1016/j.fuel.2005.10.010 Google Scholar
  14. 14.
    Tugov, A.N., Ryabov, G.A., Shtegman, A.V., Ryzhii, I.A., Litun, D.S.: All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry. Therm. Eng. (2016). doi: 10.1134/S0040601516070089 Google Scholar
  15. 15.
    Barišić, V., Hupa, M.: On changes in bed-material particles from a 550 MWth CFB boiler burning coal, bark and peat. Fuel (2007). doi: 10.1016/j.fuel.2006.07.016 Google Scholar
  16. 16.
    Kurkela, E., Ståhlberg, P.: Air gasification of peat, wood and brown coal in a pressurized fluidized-bed reactor. I. Carbon conversion, gas yields and tar formation. Fuel Process. Technol. (1992). doi: 10.1016/0378-3820(92)90038-R Google Scholar
  17. 17.
    Tabakaev, R., Shanenkov, I., Kazakov, A., Zavorin, A.: Thermal processing of biomass into high-calorific solid composite fuel. J. Anal. Appl. Pyrol. (2017). doi: 10.1016/j.jaap.2017.02.016 Google Scholar
  18. 18.
    Kosov, V.V., Sinelshchikov, V.A., Sytchev, G.A., Zaichenko, V.M.: Effect of torrefaction on properties of solid granulated fuel of different biomass types. High Temp. (2014). doi: 10.1134/S0018151X14060170 Google Scholar
  19. 19.
    Mursito, A.T., Hirajima, T., Sasaki, K.: Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel (2010). doi: 10.1016/j.fuel.2009.07.004 Google Scholar
  20. 20.
    Simonov, A.D., Fedorov, N.A., Dubinin, Yu.V., Yazykov, N.A., Yakovlev, V.A., Parmon, V.N.: Catalytic heat-generating units for industrial heating. Catal. Ind. (2013). doi: 10.1134/S207005041301008X Google Scholar
  21. 21.
    Antropov, A.P., Batenin, V.M., Zaichenko, V.M.: New technologies for distributed energetics. High Temp. (2015). doi: 10.1134/S0018151X15010010 Google Scholar
  22. 22.
    Di Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. (2008). doi: 10.1016/j.pecs.2006.12.001 Google Scholar
  23. 23.
    He, F., Yi, W., Bai, X.: Investigation on caloric requirement of biomass pyrolysis using TG-DSC analyzer. Energy Convers. Manag. (2006). doi: 10.1016/j.enconman.2005.11.011 Google Scholar
  24. 24.
    Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., Dewil, R.: Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energy (2010). doi: 10.1016/j.renene.2009.04.019 Google Scholar
  25. 25.
    Park, W.C., Atreya, A., Baum, H.R.: Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust. Flame (2010). doi: 10.1016/j.combustflame.2009.10.006 Google Scholar
  26. 26.
    Vargaftik, N.B.: Reference book on heat-transfer properties of gases and liquids [Spravochnik po teplofizicheskim svojstvam gazov i zhidkostej]. Stars, Moscow (2006) (in Russian)Google Scholar
  27. 27.
    Grishin, A.M., Golovanov, A.N., Sukov, Ya.V.: Experimental determination of thermophysical, thermokinetic, and filtration characteristics of peat. J. Eng. Phys. (2006). doi: 10.1007/s10891-006-0135-9 Google Scholar
  28. 28.
    Kulesh, R.N.: Heat and mass transfer during ignition and combustion of a batch of peat: extended abstract of Cand. Sci. [Teplomassoperenos pri zazhiganii i gorenii massiva torfa: avtoreferat dissertacii na soiskanie stepeni kandidata tehnicheskih nauk]. Tomsk (2010) (in Russian)Google Scholar
  29. 29.
    Bogdanov, N.N.: Low-temperature carbonization and gasification of peat [Polukoksovanie i gazifikacija torfa]. Gosenergoizdat, Moscow (1947) (in Russian)Google Scholar
  30. 30.
    Gronli, M.G., Melaaen, M.C.: Mathematical model for wood pyrolysis-comparison of experimental measurements with model predictions. Energy Fuels. 14, 791–800 (2000)CrossRefGoogle Scholar
  31. 31.
    Boiler thermal design: standard procedure [Teplovoj raschet kotlov: normativnyj metod]. Publisher NPO CKTI, St. Petersburg (1998) (in Russian)Google Scholar
  32. 32.
    Misnikov, O.S.: Physicochemical principles of hydrophobization of mineral binders by additives produced from peat raw material. Theor. Found. Chem. Eng. (2006). doi: 10.1134/S0040579506040130 Google Scholar
  33. 33.
    Chertkova, E.Yu.: Tehnologija dobychi i kondicionirovanija frezernogo torfa dlja poluchenija gidrofobnyh modifikatorov: avtoreferat dissertacii [The technology of extraction and conditioning of milled peat for obtaining a hydrophobic modifiers: dissertation abstract of Cand. Sci.]. Tver, 2014 (in Russian)Google Scholar
  34. 34.
    Nordin, A.: Chemical elemental characteristics of biomass fuels. Biomass Bioenergy (1994). doi: 10.1016/0961-9534(94)E0031-M Google Scholar
  35. 35.
    Young, K.D., Leboeuf, E.J.: Glass transition behavior in a peat humic acid and an aquatic fulvic acid. Environ. Sci. Technol. (2000). doi: 10.1021/es000889j Google Scholar
  36. 36.
    Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, M.J. Jr., Tester, J.W.: Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. (2008). doi: 10.1039/b810100k Google Scholar
  37. 37.
    Grønli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41, 4201–4208 (2002)CrossRefGoogle Scholar
  38. 38.
    Rakovskii, V.E., Filimonov, F.A., Novichkova, E.A.: Khimiya pirogennykh protsessov [Chemistry of Pyrogenic Processes]. Akad. Nauk BSSR, Minsk (1959) (in Russian)Google Scholar
  39. 39.
    Lishtvan, I.I., Terent’ev, A.A., Bazin, E.T., Golovach, A.A.: Fiziko-khimicheskie osnovy tekhnologii torfyanogo proizvodstva [Physicochemical Principles of Technology of the Peat Industry]. Nauka i Tekhnika, Minsk (1983) (in Russian)Google Scholar
  40. 40.
    Smol’yaninov, S.I., Maslov, S.G.: Termobriketirovanie torfa [Hot Peat Briquetting]. Tomsk. Gos. Univ., Tomsk (1975) (in Russian)Google Scholar
  41. 41.
    Zaychenko, V.M.: The rise of consumer properties of solid fuels from biomass [Povyshenie potrebitel’skih svojstv tverdogo topliva iz biomassy]. Energy Sav. [Energosberezheniye]. 3, 66–68 (2014) (in Russian)Google Scholar
  42. 42.
    Huang, C., T-Raissi, A.: Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part I: pyrolysis and autothermal pyrolysis. J. Power Sources (2007). doi: 10.1016/j.jpowsour.2006.02.081 Google Scholar
  43. 43.
    Amutio, M., Lopez, G., Aguado, R., Bilbao, J., Olazar, M.: Biomass oxidative flash pyrolysis: autothermal operation, yields and product properties. Energy Fuels (2012). doi: 10.1021/ef201662x Google Scholar
  44. 44.
    Kazakov, A.V., Plakhova, T.M., Popov, R.I.: Autothermal pyrolysis of peat in conditions of free movement in layer. MATEC Web Conf. (2014). doi: 10.1051/matecconf/20141901019 Google Scholar
  45. 45.
    Sutcu, H.: Pyrolysis of peat: product yield and characterization. Korean J. Chem. Eng. (2007). doi: 10.1007/s11814-007-0035-5 Google Scholar
  46. 46.
    Yanga, J., Chena, H., Zhaob, W., Zhou, J.: TG–FTIR-MS study of pyrolysis products evolving from peat. J. Anal. Appl. Pyrol. (2016). doi: 10.1016/j.jaap.2015.11.002 Google Scholar
  47. 47.
    Batenin, V.M., Zaichenko, V.M., Kosov, V.F., Sinel’shchikov, V.A.: Pyrolytic conversion of biomass to gaseous fuel. Dokl. Chem. (2012). doi: 10.1134/S0012500812090030 Google Scholar
  48. 48.
    Zalkind, I.Ya., Vdovchenko, V.S., Dik, E.P.: Ash and slag in a boiler furnace [Zola i shlaki v kotel’nyh topkah]. Energoatomizdat, Moscow (1988) (in Russian)Google Scholar
  49. 49.
    Khoroshavin, L.B., Medvedev, O.A., Belyakov, V.A., Mikheeva, E.V., Rudnov, V.S., Baitimirova, E.A.: Torf: vozgoranie torfa, tushenie torfjanikov i torfokompozity [Peat: peat ignition, peat bogging and peat composites]. FGBU VNII GOChS, Moscow (2013) (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Borescov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations