Waste and Biomass Valorization

, Volume 10, Issue 4, pp 851–863 | Cite as

Acidophilic α-Amylase Production from Aspergillus niger RBP7 Using Potato Peel as Substrate: A Waste to Value Added Approach

  • Riddha Mukherjee
  • Tanmay Paul
  • Jyoti P. Soren
  • Suman K. Halder
  • Keshab C. Mondal
  • Bikash R. Pati
  • Pradeep K. Das MohapatraEmail author
Original Paper


In the present study a fungi was newly isolated from municipal dumping area of Midnapore town, West Bengal, India for the production of α-amylase. The isolate was identified as Aspergillus niger RBP7 (KX100578.1) through phenotypic and 18S rDNA sequencing observation. It produced clear zone (6.2 mm) on Czapekdox agar medium fortified with starch (1%, w/v). Optimization of enzyme production was studied under solid state fermentation (SSF) using potato peel as a substrate by one-variable-at-a-time (OVAT) and followed with response surface methodology (RSM), which enhanced enzyme titer up to 1112.25 U/gds with an initial medium pH-3.0. The texture of the potato peel before and after the fermentation was studied by FTIR. After fermentation the cell free supernatant was significantly effective for hydrolysis of raw starchy food stuff (taro, yam, malanga and sweet potato) and also able to produce mono-meric and dimeric sugars-like glucose and maltose. These characteristics of the enzyme may be suitable for use to treat digestive dysfunction.

Graphical Abstract


α-Amylase Potato peel RSM Aspergillus niger RBP7 



The authors would like to acknowledge the Central Research Facility, Indian Institute Of Technology, Kharagpur, India.


  1. 1.
    Raghu, H.S., Rajeshwara, N.A.: Immobilization of α-amylase (1,4-α-d glucanglucano hydralase) by calcium alginate encapsulation. Int. Food Res. J. 22, 869–871 (2015)Google Scholar
  2. 2.
    Jana, M., Pati, B.: Thermostable, salt-tolerant a-amylase from Bacillus sp. MD 124. J. Basic Microbiol. 37, 323–326 (1997)CrossRefGoogle Scholar
  3. 3.
    Abou-Elela, G.M., Nermeen, A.E., Wefky, S.H.: Statistical optimization of cold adapted α-amylase production by free and immobilized cells of Nocardiopsis aegyptia. J. Appl. Sci. Res. 5(3), 286–292 (2009)Google Scholar
  4. 4.
    Dey, G., Mitra, A., Banerjee, R., Maiti, B.R.: Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7, 227–231 (2001)CrossRefGoogle Scholar
  5. 5.
    Aiyer, P.V.D.: Effect of C:N ratio on alpha amylase production by Bacillus licheniformis SPT 27. Afr. J. Biotechnol. 3, 519–522 (2004)CrossRefGoogle Scholar
  6. 6.
    Alva, S., Anupama, J., Savia, J., Chiu, Y.Y.: Characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. Afr. J. Biotechnol. 6, 576–581 (2005)Google Scholar
  7. 7.
    Baig, M.M.V., Baig, M.L.B., Baig, M.A.I., Yasmeen, M.: Saccharification of banana agro-waste by cellulytic enzymes. Afr. J. Biotechnol. 3, 447–450 (2004)CrossRefGoogle Scholar
  8. 8.
    Baks, T., bruins, M.E., Matser, A.M., Jansen, A.E.M., Boom, R.M.: Effect of gelatinization and hydrolysis conditions on the selectively of starch hydrolysis with alpha amylase from Bacillus licheniformis. J. Agri. Food Chem. 56, 488–495 (2008)CrossRefGoogle Scholar
  9. 9.
    Pandey, A., Nigam, P., Soccol, V.T., Singh, D., Mohan, R.: Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135–152 (2000)CrossRefGoogle Scholar
  10. 10.
    Bernfeld, P.: Amylases, α and β. In: Methods in enzymology. New York, Academic Press (1955)Google Scholar
  11. 11.
    Reddy, N., Yang, Y.: Properties of high-quality long natural cellulose fibers from rice straw. J. Agric. Food Chem. 54, 8077–8081 (2006)CrossRefGoogle Scholar
  12. 12.
    Mishra, S., Noronha, S.B., Suraishkumar, G.K.: Increase in enzyme productivity by induced oxidative stress in Bacillus subtilis cultures and analysis of its mechanism using microarray data. Process Biochem. 40, 1863–1870 (2005)CrossRefGoogle Scholar
  13. 13.
    Okolo, B.N., Ire, F.S., Ezeogu, L.I., Anyanwu, C.U., Odibo, F.J.C.: Purification and some properties of a noval starch digesting amylase from Aspergillus carbonarius. J. Sci. Food Agric. 81(3), 329–336 (2000)CrossRefGoogle Scholar
  14. 14.
    Forgarty, W.M., Kelly, C.T.: Developments in microbial extracellular enzymes. In: Wiseman, E.A. (ed.) Topics in enzyme and fermentation biotechnology, vol. 3, pp. 45–108. Applied Science Publishers, London (1979)Google Scholar
  15. 15.
    Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K.M., Carlos Ricardo Soccol, C.R., Pandey, A.: α-Amylases from microbial sources: an overview on recent developments. Food Technol. Biotechnol. 44(2), 173–184 (2006)Google Scholar
  16. 16.
    Pederson, H., Nielson, J.: The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 53, 278–281 (2000)CrossRefGoogle Scholar
  17. 17.
    Taniguchi, H., Odashima, F., Igarashi, M., Maruyama, Y., Nkamura, M.: Characterization of a potato starch digesting bacterium and its production of amylase. Agric. Biol. Chem. 46, 2107–2115 (1982)Google Scholar
  18. 18.
    Mitchell, D.A., Lonsane, B.K.: General principles of solid state fermentation, monogramed by Doelle HW, Rolz C. Publication of Oxford, London (1990)Google Scholar
  19. 19.
    Laddish, M.R., Lin, K.W., Voloch, M., Tsao, G.T.: Process consideration in the enzymatic hydrolysis of biomass. Enzyme Microbial. Technol. 5, 8–16 (1983)Google Scholar
  20. 20.
    Gautam, B., Karki, B.T., Panta, O.P.: Optimization of cultural conditions for solid state fermentation of amylase production by Aspergillus species. NepJOL. 14(1), 67–74 (2013)Google Scholar
  21. 21.
    Suganthi, R., Benazir, J.F., Santhi, R., Ramesh Kumar, V., Hari, A., Meenakshi, N., Nidhiya, K.A., Kavitha, G., Lakshmi, R.: Amylase production by Aspergillus niger under solid state fermentation using agroindustrial waste. IJEST. 3(2), 1756–1763 (2011)Google Scholar
  22. 22.
    Raul, D., Biswas, T., Mukhopadhyay, S., Das, K.S., Gupta, S.: Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochem. Res. Int. 2014, 568141 (2014)CrossRefGoogle Scholar
  23. 23.
    Liang, S., McDonald, A.G.: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 62, 8421–8429 (2014)CrossRefGoogle Scholar
  24. 24.
    Bergmann, F.W., Abe, J., Hizukuri, S.: Selection of micro-organisms which produce raw starch degrading amylases. Appl. Microbiol. Biotechnol. 27, 443–446 (1988)CrossRefGoogle Scholar
  25. 25.
    Cheesbrough, M.: District laboratory practice in tropical countries, 2nd edn., SheckWah Tong Printing Press Ltd., Hong Kong, pp. 362–363 (2005)CrossRefGoogle Scholar
  26. 26.
    Swain, M.R., Ray, R.C.: Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue. J. Basic Microbiol. 47, 417–425 (2007)CrossRefGoogle Scholar
  27. 27.
    Poddar, A., Gachhui, R., Jana, S.C.: Optimization of physico-chemical condition for improved production of hyper thermostable β amylase from Bacillus subtilis DJ5. J. Biochem. Tech. 3, 370–374 (2012)Google Scholar
  28. 28.
    Nguyen, Q.D., Rezessy-Szabo, J.M., Hoschke, A.: Optimization of composition of media for the production of amylolytic enzymes by Thermomyces lanuginosus ATCC 34626. Food Technol. Biotechnol. 38, 229–234 (2000)Google Scholar
  29. 29.
    Bedan, D.S., Aziz, G.M., AlSa’ady, A.J.R.: Optimum conditions for α-amylase production by Aspergillus niger mutant isolate using solid state fermentation. Curr. Res. Microbiol. Biotechnol. 2, 450–456 (2014)Google Scholar
  30. 30.
    Deng, S., Yu, G., Ting, Y.P.: Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf. B. 44, 179–186 (2005)CrossRefGoogle Scholar
  31. 31.
    Kalaiarasi, K., Ramasamy, P.: Optimization of process parameters for α-amylase production under solid-state fermentation by Bacillus cereus MTCC 10202. Afr. J. Microbiol. Res. 7(45), 5166–5177 (2013)CrossRefGoogle Scholar
  32. 32.
    Mishra, A., Kavita, K., Jha, B.: Characterization of extracellular polymeric substance produced by micro-algae Dunaliellasalina. Carb Pol. 82, 852–857 (2011)CrossRefGoogle Scholar
  33. 33.
    Dash, K.B., Rahman, M.M., Sarker, K.P.: Molecular identification of a newly isolated Bacillus subtilis BI19 and optimization of production conditions for enhanced production of extracellular amylase. BioMed. Res. Int. 2015, 859805 (2015)CrossRefGoogle Scholar
  34. 34.
    Sindhu, R., Suprabha, G.N., Shashidhar, S.: Optimization of process parameters for the production of α-amylase from Penicillium janthinellum (NCIM 4960) under solid state fermentation. Afr. J. Microbiol. Res. 3(9), 498–503 (2009)Google Scholar
  35. 35.
    Hassan, H., Khairiah, A.K.: Optimization of alpha amylase production from rice straw using solid-state fermentation of Bacillus subtilis. IJEST 4, 1–16 (2015)Google Scholar
  36. 36.
    Eman, A.K., Walaa, A.A.W., Shireen, A.A. S., Mohamed, E.H., Amany, L.K., Mona, A.E.: Production, simmobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int. J. Biol. Macromol. 102, 694–703 (2017)CrossRefGoogle Scholar
  37. 37.
    Pereiraa, C.R., Resendea, J.T.V., Guerraa, E.P., Limab, V.A., Martinsa, M.D., Knob, A.: Enzymatic conversion of sweet potato granular starch into fermentable sugars: feasibility of sweet potato peel as alternative substrate for α-amylase production. ISBAB 11, 231–238 (2017)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Riddha Mukherjee
    • 1
  • Tanmay Paul
    • 1
  • Jyoti P. Soren
    • 1
  • Suman K. Halder
    • 1
  • Keshab C. Mondal
    • 1
  • Bikash R. Pati
    • 1
  • Pradeep K. Das Mohapatra
    • 1
    Email author
  1. 1.Department of MicrobiologyVidyasagar UniversityMidnaporeIndia

Personalised recommendations