Waste and Biomass Valorization

, Volume 10, Issue 4, pp 1013–1020 | Cite as

Low-Temperature Catalytic Cracking of Biomass Gasification Tar Over Ni/HZSM-5

  • Guanyi Chen
  • Jian Li
  • Cong Liu
  • Beibei Yan
  • Zhanjun Cheng
  • Wenchao MaEmail author
  • Jingang Yao
  • Huan Zhang
Original Paper


Tar is a major bottleneck for advancing biomass gasification in industrial applications, and therefore it is necessary to develop a clean and efficient tar elimination technology. Experiments of ex-situ real tar catalytic cracking to produce syngas under low temperature condition were proposed in this study with Ni supported by HZSM-5 as catalyst. The effects of various reaction conditions on catalytic performance were investigated, and the mechanisms of tar cracking and coke formation were also discussed by XRD, ICP-MS and BET analysis. Results showed that tar conversion and heat value of gaseous products were 91.52 wt% and 6.40 MJ/Nm3, respectively, when temperature was 500 °C, WHSV was 0.65 h−1 and Ni loading content was 6 wt%. However, coking rate of catalyst was higher than 19.20 wt%. HZSM-5 supported Ni exhibited remarkable tar cracking ability and it could also improve heating value of gaseous products, but coke deactivation of catalyst should be further investigated.


Biomass gasification Tar Catalytic cracking HZSM-5 supported Ni 



This work is financially supported by project in the National Science & Technology Pillar Program (2015BAD21B06) and the project in the Natural Science Foundation of China (51676138).


  1. 1.
    Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew. Sustain. Energy Rev. 13(3), 594–604 (2009). doi: 10.1016/j.rser.2008.01.009 CrossRefGoogle Scholar
  2. 2.
    Han, J., Kim, H.: The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew. Sustain. Energy Rev. 12(2), 397–416 (2008). doi: 10.1016/j.rser.2006.07.015 CrossRefGoogle Scholar
  3. 3.
    Molino, A., Iovane, P., Donatelli, A., Braccio, G., Chianese, S., Musmarra, D.: Steam gasification of refuse-derived fuel in a rotary kiln pilot plant: experimental tests. Chem. Eng. Trans. 32, 337–342 (2013). doi: 10.3303/CET1332057 Google Scholar
  4. 4.
    Chianese, S., Fail, S., Binder, M., Rauch, R., Hofbauer, H., Molino, A., Blasi, A., Musmarra, D.: Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Catal. Today. 277, 182–191 (2016). doi: 10.1016/j.cattod.2016.04.005 CrossRefGoogle Scholar
  5. 5.
    Anis, S., Zainal, Z.A.: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew. Sustain. Energy Rev. 15(5), 2355–2377 (2011). doi: 10.1016/j.rser.2011.02.018 CrossRefGoogle Scholar
  6. 6.
    Devi, L., Ptasinski, K., Janssen, F.J.J.G.: A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy. 24(2), 125–140 (2003)CrossRefGoogle Scholar
  7. 7.
    Shen, Y., Yoshikawa, K.: Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew. Sustain. Energy Rev. 21, 371–392 (2013). doi: 10.1016/j.rser.2012.12.062 CrossRefGoogle Scholar
  8. 8.
    Yang, X., Xu, S., Xu, H., Liu, X., Liu, C.: Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catal. Commun. 11(5), 383–386 (2010). doi: 10.1016/j.catcom.2009.11.006 CrossRefGoogle Scholar
  9. 9.
    Wang, D., Yuan, W., Ji, W.: Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl. Energ. 88(5), 1656–1663 (2011). doi: 10.1016/j.apenergy.2010.11.041 CrossRefGoogle Scholar
  10. 10.
    Yue, B., Wang, X., Ai, X., Yang, J., Li, L., Lu, X., Ding, W.: Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO–Al2O3 catalysts. Fuel Process. Technol. 91(9), 1098–1104 (2010). doi: 10.1016/j.fuproc.2010.03.020 CrossRefGoogle Scholar
  11. 11.
    Shen, Y., Yoshikawa, K.: Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification. Ind. Eng. Chem. Res. 53(27), 10929–10942 (2014). doi: 10.1021/ie501843y CrossRefGoogle Scholar
  12. 12.
    Zhang, S., Dong, Q., Zhang, L., Xiong, Y.: High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour. Technol. 191, 17–23 (2015). doi: 10.1016/j.biortech.2015.04.114 CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Cheng, Y.-T., Vispute, T.P., Xiao, R., Huber, G.W.: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy Environ. Sci. 4(6), 2297 (2011). doi: 10.1039/c1ee01230d CrossRefGoogle Scholar
  14. 14.
    Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., Atong, D.: Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew. Energy. 79, 28–37 (2015). doi: 10.1016/j.renene.2014.10.013 CrossRefGoogle Scholar
  15. 15.
    Thangalazhy-Gopakumar, S., Adhikari, S., Chattanathan, S.A., Gupta, R.B.: Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour. Technol. 118, 150–157 (2012). doi: 10.1016/j.biortech.2012.05.080 CrossRefGoogle Scholar
  16. 16.
    Galadima, A., Muraza, O.: In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers. Manag. 105, 338–354 (2015). doi: 10.1016/j.enconman.2015.07.078 CrossRefGoogle Scholar
  17. 17.
    Hilten, R.N., Speir, R.A., Kastner, J.R., Mani, S., Das, K.C.: Effect of torrefaction on bio-oil upgrading over HZSM-5. Part 1: product yield, product quality, and catalyst effectiveness for benzene, toluene, ethylbenzene, and xylene production. Energy Fuels. 27(2), 830–843 (2013). doi: 10.1021/ef301694x CrossRefGoogle Scholar
  18. 18.
    Iliopoulou, E.F., Stefanidis, S.D., Kalogiannis, K.G., Delimitis, A., Lappas, A.A., Triantafyllidis, K.S.: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B. 127, 281–290 (2012). doi: 10.1016/j.apcatb.2012.08.030 CrossRefGoogle Scholar
  19. 19.
    Fan, Y., Cai, Y., Li, X., Yu, N., Yin, H.: Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor. J. Anal. Appl. Pyrolysis. 108, 185–195 (2014). doi: 10.1016/j.jaap.2014.05.001 CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Wang, J.: Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor. Bioresour. Technol. 214, 700–710 (2016). doi: 10.1016/j.biortech.2016.05.027 CrossRefGoogle Scholar
  21. 21.
    Chen, G.-Y., Liu, C., Ma, W.-C., Yan, B.-B., Ji, N.: Catalytic cracking of tar from biomass gasification over a HZSM-5-supported Ni–MgO catalyst. Energy Fuels. 29(12), 7969–7974 (2015). doi: 10.1021/acs.energyfuels.5b00830 CrossRefGoogle Scholar
  22. 22.
    Alipour, S.M.: Recent advances in naphtha catalytic cracking by nano ZSM-5: a review. Chin. J. Catal. 37(5), 671–680 (2016). doi: 10.1016/s1872-2067(15)61091-9 CrossRefGoogle Scholar
  23. 23.
    Huang, X., Aihemaitijiang, D., Xiao, W.-D.: Co-reaction of methanol and olefins on the high silicon HZSM-5 catalyst: a kinetic study. Chem. Eng. J. 286, 150–164 (2016). doi: 10.1016/j.cej.2015.10.045 CrossRefGoogle Scholar
  24. 24.
    García-Labiano, F., Gayán, P., de Diego, L.F., Abad, A., Mendiara, T., Adánez, J., Nacken, M., Heidenreich, S.: Tar abatement in a fixed bed catalytic filter candle during biomass gasification in a dual fluidized bed. Appl. Catal. B 188, 198–206 (2016). doi: 10.1016/j.apcatb.2016.02.005 CrossRefGoogle Scholar
  25. 25.
    Fuentes-Cano, D., Gómez-Barea, A., Nilsson, S., Ollero, P.: Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification. Chem. Eng. J. 228, 1223–1233 (2013). doi: 10.1016/j.cej.2013.03.130 CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Chen, P., Lou, H.: In situ catalytic conversion of biomass fast pyrolysis vapors on HZSM‑5. J. Energy Chem. 25(3), 427–433 (2016). doi: 10.1016/j.jechem.2016.03.014 CrossRefGoogle Scholar
  27. 27.
    Zou, X., Chen, T., Liu, H., Zhang, P., Chen, D., Zhu, C.: Catalytic cracking of toluene over hematite derived from thermally treated natural limonite. Fuel. 177, 180–189 (2016). doi: 10.1016/j.fuel.2016.02.094 CrossRefGoogle Scholar
  28. 28.
    Anis, S., Zainal, Z.A., Bakar, M.Z.: Thermocatalytic treatment of biomass tar model compounds via radio frequency. Bioresour. Technol. 136, 117–125 (2013). doi: 10.1016/j.biortech.2013.02.049 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of ScienceTibet UniversityLhasaChina
  2. 2.School of Environmental Science and Engineering/State Key Laboratory of EnginesTianjin UniversityTianjinChina
  3. 3.Tianjin Engineering Centre of Biomass-derived Gas and Oil/Key Laboratory of Biomass-based Oil and Gas (China Petroleum and Chemical Industry Federation)TianjinChina
  4. 4.Architectural Design Research Institute of Tianjin UniversityTianjinChina
  5. 5.Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of EducationTianjinChina

Personalised recommendations