Waste and Biomass Valorization

, Volume 10, Issue 4, pp 839–850 | Cite as

Direct Use of Spent Mushroom Substrate from Pleurotus pulmonarius as a Readily Delignified Feedstock for Cellulase Production

  • Iffah Nabilah Mohd Ariff
  • Ezyana Kamal Bahrin
  • Norhayati Ramli
  • Suraini Abd-AzizEmail author
Short Communication


The feasibility of spent mushroom substrate (SMS) as an alternative fermentation feedstock for cellulase production has been demonstrated in this work. Utilization of SMS as a substrate has been attempted widely due to its high cellulose content and readily available in smaller particle size. On top of that, the availability of delignified SMS by the action of Pleurotus pulmonarius during mushroom cultivation offers another benefit to its use whereby no chemical pretreatment would be required prior to fermentation. The recovery of crude laccase and manganese peroxidase from delignified SMS were found to be 3 and 1.4 U/g, respectively. Further to this, the cellulase production from SMS by Trichoderma asperellum UPM 1 under solid state fermentation was optimized by applying central composite design, resulted in increment of 1.4-fold in CMCase (171.21 U/g) and 1.5-fold in β-glucosidase (6.83 U/g), with the optimum temperature of 27.5 °C, initial moisture content 81% and initial pH of fermentation 4.5. Therefore, this study showed that the direct utilization of SMS is feasible for promising cellulase production by T. asperellum UPM 1.

Graphical Abstract


Cellulase Bioconversion Lignocellulolytic enzyme Filamentaous fungi Spent mushroom substrate Solid state fermentation 



The authors would like to acknowledge the support from Environmental Biotechnology (EB) Research Group, Universiti Putra Malaysia.


  1. 1.
    Haimid, M.T., Rahim, H., Dardak, R.A.: Understanding the mushroom industry and its marketing strategies for fresh produce in Malaysia. Econ. Technol. Manag. Rev. 8, 27–37 (2013)Google Scholar
  2. 2.
    PEMANDU: Economic transformation programme: a roadmap for MalaysiaGoogle Scholar
  3. 3.
    Mattila, P., Ko, K.: Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49, 2343–2348 (2001)CrossRefGoogle Scholar
  4. 4.
    Phan, C.-W., Sabaratnam, V.: Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96, 863–873 (2012). doi: 10.1007/s00253-012-4446-9 CrossRefGoogle Scholar
  5. 5.
    Finney, K.N., Ryu, C., Sharifi, V.N., Swithenbank, J.: The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies. Bioresour. Technol. 100, 310–315 (2009). doi: 10.1016/j.biortech.2008.05.054 CrossRefGoogle Scholar
  6. 6.
    Lim, S.H., Lee, Y.H., Kang, H.W.: Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology. 41, 214–220 (2013). doi: 10.5941/MYCO.2013.41.4.214 CrossRefGoogle Scholar
  7. 7.
    Wang, S., Xu, F., Li, Z., Zhao, S., Song, S., Rong, C., Geng, X., Liu, Y.: The spent mushroom substrates of Hypsizigus marmoreus can be an effective component for growing the oyster mushroom Pleurotus ostreatus. Sci. Hortic. 186, 217–222 (2015). doi: 10.1016/j.scienta.2015.02.028 CrossRefGoogle Scholar
  8. 8.
    Oguri, E., Takimura, O., Matsushika, A., Inoue, H., Sawayama, S.: Bioethanol production by Pichia stipitis from enzymatic hydrolysates of corncob-based spent mushroom substrate. Food Sci. Technol. Res. 17, 267–272 (2011). doi: 10.3136/fstr.17.267 CrossRefGoogle Scholar
  9. 9.
    Wu, S., Lan, Y., Wu, Z., Peng, Y., Chen, S., Huang, Z., Xu, L., Gelbič, I., Guan, X., Zhang, L., Zou, S.: Pretreatment of spent mushroom substrate for enhancing the conversion of fermentable sugar. Bioresour. Technol. 148, 596–600 (2013). doi: 10.1016/j.biortech.2013.08.122 CrossRefGoogle Scholar
  10. 10.
    Chen, G., Zeng, G., Tu, X., Huang, G., Chen, Y.: A novel biosorbent: characterization of the spent mushroom compost and its application for removal of heavy metals. J. Environ. Sci. 17, 756–760 (2005)Google Scholar
  11. 11.
    Fazaeli, H., Masoodi, A.R.T.: Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian Australas. J. Anim. Sci. 19, 845–851 (2006). doi: 10.5713/ajas.2006.845 CrossRefGoogle Scholar
  12. 12.
    Chiu, S.-W., Gao, T., Chan, C.S.-S., Ho, C.K.-M.: Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere 75, 837–842 (2009). doi: 10.1016/j.chemosphere.2008.12.044 CrossRefGoogle Scholar
  13. 13.
    Lau, K.L., Tsang, Y.Y., Chiu, S.W.: Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52, 1539–1546 (2003). doi: 10.1016/S0045-6535(03)00493-4 CrossRefGoogle Scholar
  14. 14.
    Ahlawat, O.P., Gupta, P., Kumar, S., Sharma, D.K., Ahlawat, K.: Bioremediation of fungicides by spent mushroom substrate and its associated microflora. Indian J. Microbiol. 50, 390–395 (2010). doi: 10.1007/s12088-011-0067-8 CrossRefGoogle Scholar
  15. 15.
    Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A.: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46, 541–549 (2010). doi: 10.1016/j.enzmictec.2010.03.010 CrossRefGoogle Scholar
  16. 16.
    Camassola, M., Dillon, a. J.P.: Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J. Appl. Microbiol. 103, 2196–2204 (2007). doi: 10.1111/j.1365-2672.2007.03458.x CrossRefGoogle Scholar
  17. 17.
    Li, X.H., Yang, H.J., Roy, B., Park, E.Y., Jiang, L.J., Wang, D., Miao, Y.G.: Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 165, 190–198 (2010). doi: 10.1016/j.micres.2009.04.001 CrossRefGoogle Scholar
  18. 18.
    Sukumaran, R.K., Singhania, R.R., Pandey, A.: Microbial cellulases - production, applications and challenges. J. Sci. Ind. Res. (India). 64, 832–844 (2005)Google Scholar
  19. 19.
    Gusakov, A. V., Berlin, A.G., Popova, N.N., Okunev, O.N., Sinitsyna, O.A., Sinitsyn, A.P.: A comparative study of different cellulase preparations in the enzymatic treatment of cotton fabrics. Appl. Biochem. Biotechnol. 88, 119–126 (2000). doi: 10.1385/ABAB:88:1-3:119 CrossRefGoogle Scholar
  20. 20.
    Singh, A.D., Abdullah, N., Vikineswary, S.: Optimization of extraction of bulk enzymes from spent mushroom compost. J. Chem. Technol. Biotechnol. 78, 743–752 (2003). doi: 10.1002/jctb.852 CrossRefGoogle Scholar
  21. 21.
    Mandel, M., Weber, J.: Exoglucanase activity by microorganisms. Adv. Chem. 95, 391–414 (1969)CrossRefGoogle Scholar
  22. 22.
    Association of Official Analytical Chemists (AOAC): Official method 2002.04 amylase-treated neutral detergent fiber in feeds using refluxing in beakers or crucibles first action. AOAC, Washington DC (2007)Google Scholar
  23. 23.
    Li, X., Jia, R., Li, P., Ang, S.: Response surface analysis for enzymatic decolorization of congo red by manganese peroxidase. J. Mol. Catal. B 56, 1–6 (2009). doi: 10.1016/j.molcatb.2008.03.013 CrossRefGoogle Scholar
  24. 24.
    Bourbonnais, R., Paice, M.G.: Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem. J. 255, 445–450 (1988)CrossRefGoogle Scholar
  25. 25.
    Tien, M., Kirk, T.K.: Lignin-degrading enzyme from the hymenomycetes Phanerochaete chrysosporium burds. Science. 221, 661–663 (1983). doi: 10.1126/science.221.4611.661 CrossRefGoogle Scholar
  26. 26.
    Wood, T.M., Bhat, K.M.: Methods for measuring cellulase activities. Methods Enzymol. 160, 87–112 (1988). doi: 10.1016/0076-6879(88)60109-1 CrossRefGoogle Scholar
  27. 27.
    Koutrotsios, G., Mountzouris, K.C., Chatzipavlidis, I., Zervakis, G.I.: Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi—Assessment of their effect on the final product and spent substrate properties. Food Chem. 161, 127–135 (2014). doi: 10.1016/j.foodchem.2014.03.121 CrossRefGoogle Scholar
  28. 28.
    Jordan, S.N., Mullen, G.J., Murphy, M.C.: Composition variability of spent mushroom compost in Ireland. Bioresour. Technol. 99, 411–418 (2008). doi: 10.1016/j.biortech.2006.12.012 CrossRefGoogle Scholar
  29. 29.
    Brijwani, K., Oberoi, H.S., Vadlani, P. V.: Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 45, 120–128 (2010). doi: 10.1016/j.procbio.2009.08.015 CrossRefGoogle Scholar
  30. 30.
    Hariharan, S., Nambisan, P.: Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 8, 250–271 (2013)Google Scholar
  31. 31.
    Lee, J.W., Koo, B.W., Choi, J.W., Choi, D.H., Choi, I.G.: Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour. Technol. 99, 2736–2741 (2008). doi: 10.1016/j.biortech.2007.07.003 CrossRefGoogle Scholar
  32. 32.
    Ruiz-Rodríguez, A., Polonia, I., Soler-Rivas, C., Wichers, H.J.: Ligninolytic enzymes activities of Oyster mushrooms cultivated on OMW (olive mill waste) supplemented media, spawn and substrates. Int. Biodeterior. Biodegrad. 65, 285–293 (2011). doi: 10.1016/j.ibiod.2010.11.014 CrossRefGoogle Scholar
  33. 33.
    Cohen, R., Persky, L., Hadar, Y.: Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol. 58, 582–594 (2002). doi: 10.1007/s00253-002-0930-y CrossRefGoogle Scholar
  34. 34.
    Zhu, Z., Sathitsuksanoh, N., Vinzant, T., Schell, D.J., McMillan, J.D., Zhang, Y.H.P.: Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol. Bioeng. 103, 715–724 (2009). doi: 10.1002/bit.22307 CrossRefGoogle Scholar
  35. 35.
    Li, J., Sun, F., Li, X., Yan, Z., Yuan, Y., Liu, X.: Enhanced saccharification of corn straw pretreated by alkali combining crude ligninolytic enzymes. J. Chem. Technol. Biotechnol. 87, 1687–1693 (2012). doi: 10.1002/jctb.3818 CrossRefGoogle Scholar
  36. 36.
    Yu, H., Guo, G., Zhang, X., Yan, K., Xu, C.: The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour. Technol. 100, 5170–5175 (2009). doi: 10.1016/j.biortech.2009.05.049 CrossRefGoogle Scholar
  37. 37.
    Zhang, Y., Xu, J., Yuan, Z., Xu, H., Yu, Q.: Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour. Technol. 101, 3153–3158 (2010). doi: 10.1016/j.biortech.2009.12.080 CrossRefGoogle Scholar
  38. 38.
    Ball, A.S., Jackson, A.M.: The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresour. Technol. 54, 311–314 (1995). doi: 10.1016/0960-8524(95)00153-0 CrossRefGoogle Scholar
  39. 39.
    Xiaoping, X., Xianghua, W.E.N., Yanan, B.A.I., Yi, Q.: Effects of culture conditions on ligninolytic enzymes and protease production by Phanerochaete chrysosporium in air. J. Environ. Sci. 20, 94–100 (2008)CrossRefGoogle Scholar
  40. 40.
    Ngezimana, W., Mtaita, T.A., Mtukwa, I.: Potential of organic residues in producing oyster mushroom, Pleurotus ostreatus Fr. (Polyporaceae). Int. J. Biol. Chem. Sci. 1, 108–120 (2007)Google Scholar
  41. 41.
    Cho, N.S., Malarczyk, E., Nowak, G., Nowak, M., Kochmanska-Rdest, J., Leonowicz, A., Ohga, S.: Changes in phenol oxidases and superoxide dismutase during fruit-body formation of Pleurotus on sawdust culture. Mycoscience 43, 267–270 (2002)CrossRefGoogle Scholar
  42. 42.
    Rühl, M., Fischer, C., Kües, U.: Ligninolytic enzyme activities alternate with mushroom production during industrial cultivation of Pleurotus ostreatus on wheat- straw-based substrate. Curr. Trends Biotechnol. Pharm. 2, 478–492 (2008)Google Scholar
  43. 43.
    Montoya, S., Orrego, C.E., Levin, L.: Growth, fruiting and lignocellulolytic enzyme production by the edible mushroom Grifola frondosa (maitake). World J. Microbiol. Biotechnol. 28, 1533–1541 (2012). doi: 10.1007/s11274-011-0957-2 CrossRefGoogle Scholar
  44. 44.
    Singhania, R.R., Sukumaran, R.K., Pandey, A.: Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl. Biochem. Biotechnol. 142, 60–70 (2007). doi: 10.1007/s12010-007-0019-2 CrossRefGoogle Scholar
  45. 45.
    Dos-Santos, T.C., Gomes, D.P.P., Bonomo, R.C.F., Franco, M.: Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem. 133, 1299–1304 (2012). doi: 10.1016/j.foodchem.2011.11.115 CrossRefGoogle Scholar
  46. 46.
    Yoon, L.W., Ang, T.N., Ngoh, G.C., Chua, A.S.M.: Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy. 67, 319–338 (2014). doi: 10.1016/j.biombioe.2014.05.013 CrossRefGoogle Scholar
  47. 47.
    Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M.N., Lundquist, K., Taherzadeh, M.J.: Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6, 5224–5259 (2011). doi: 10.15376/biores.6.4.5224-5259 Google Scholar
  48. 48.
    Kumar, S., Sharma, H.K., Sarkar, B.C.: Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci. Biotechnol. 20, 1289–1298 (2011). doi: 10.1007/s10068-011-0178-3 CrossRefGoogle Scholar
  49. 49.
    Orzua, M.C., Mussatto, S.I., Contreras-Esquivel, J.C., Rodriguez, R., de la Garza, H., Teixeira, J.A., Aguilar, C.N.: Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 30, 24–27 (2009). doi: 10.1016/j.indcrop.2009.02.001 CrossRefGoogle Scholar
  50. 50.
    Raimbault, M.: General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1, 114–140 (1998). doi: 10.2225/vol1-issue3-fulltext-9 CrossRefGoogle Scholar
  51. 51.
    Bahrin, E.K., Seng, P.Y., Abd-aziz, S.: Effect of oil palm empty fruit bunch particle size on cellulase-production by Botryosphaeria sp. under solid state fermentation. Aust. J. Basic Appl. Sci. 5, 276–280 (2011)Google Scholar
  52. 52.
    Prakasham, R.S., Rao, C.S., Sarma, P.N.: Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97, 1449–1454 (2006). doi: 10.1016/j.biortech.2005.07.015 CrossRefGoogle Scholar
  53. 53.
    Membrillo, I., Sánchez, C., Meneses, M., Favela, E., Loera, O.: Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour. Technol. 99, 7842–7847 (2008). doi: 10.1016/j.biortech.2008.01.083 CrossRefGoogle Scholar
  54. 54.
    Sohail, M., Siddiqi, R., Ahmad, A., Khan, S.A.: Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N. Biotechnol. 25, 437–441 (2009). doi: 10.1016/j.nbt.2009.02.002 CrossRefGoogle Scholar
  55. 55.
    Shulga, G., Betkers, T., Shakels, V., Neiberte, B., Verovkins, A., Brovkina, J., Belous, O., Ambrazaitene, D., Žukauskaite, A.: Effect of the modification of lignocellulosic materials with a lignin-polymer complex on their mulching properties. BioResources 2, 572–582 (2007)Google Scholar
  56. 56.
    Saldarriaga, J., Pablos, A., Aguado, R., Amutio, M., Olazar, M.: Characterization of lignocellulosic biofuels by TGA. Int. Rev. Chem. Eng. 4, 585–588 (2012)Google Scholar
  57. 57.
    Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48, 1293–1302 (2013). doi: 10.1016/j.procbio.2013.06.019 CrossRefGoogle Scholar
  58. 58.
    Rahnama, N., Mamat, S., Shah, U.K.M., Ling, F.H., Rahman, N.A.A., Ariff, A.B.: Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources 8, 2881–2896 (2013). doi: 10.15376/biores.8.2.2881-2896 CrossRefGoogle Scholar
  59. 59.
    Deswal, D., Khasa, Y.P., Kuhad, R.C.: Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 102, 6065–6072 (2011). doi: 10.1016/j.biortech.2011.03.032 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations