Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 817–825 | Cite as

Bioconversion of Saccharum officinarum Leaves for Ethanol Production Using Separate Hydrolysis and Fermentation Processes

  • Pasakorn Jutakridsada
  • Khwantri Saengprachatanarug
  • Pornnapa Kasemsiri
  • Salim Hiziroglu
  • Khanita KamwilaisakEmail author
  • Prinya Chindaprasirt
Original Paper
  • 148 Downloads

Abstract

The leaves of sugarcane (Saccharum officinarum) are agricultural wastes that can be converted to bioethanol by separate hydrolysis and fermentation (SHF) processes. The effect of dilute acid hydrolysis conditions such as acid concentration, sugarcane leave concentration and hydrolysis time on sugar production were investigated. The optimized conditions were at 1%v/v of H2SO4, 100 g/L of sugarcane leaves, and hydrolysis time 60 min. The hydrolysate yielded sugar monomers at a concentration of 14.48 g/L of xylose and 2.59 g/L of glucose that was neutralized prior to fermentation. The fermentation process was carried out using shaken and unshaken stages. The shaken stage was maintained at 30 °C at 150 rpm for 24 h. It was found that Pichia stipitis BCC 15191 consumed only glucose then xylose after glucose depletion, while Candida shehatae TISTR 5843 used the both sugars concurrently in the exponential phase. Aggregation of P. stipitis BCC 15191 cells occurred during the stationary phase. Maximal ethanol yields of 0.21 and 0.20 g Ethanol/g Sugar consumptions were obtained for C. shehatae TISTR 5843 and P. stipitis BCC 15191, respectively. This study demonstrates the potential value of this agricultural waste as a useful feedstock for biological generation of bioethanol.

Keywords

Acid hydrolysis Bioethanol Candida shehatae Pichia stipitis SHF process 

Notes

Acknowledgements

We gratefully acknowledge Khon Kean University for financial support (600023), Farm Engineering and Automatic Control Technology, Applied Engineering for Important Crops of the Northeast Research Group, and the Graduate School at Khon Kaen University for financial support. We are also grateful to Dr. Malinda Salim and Dr. Stephen Jaffe for great input and suggestions.

Supplementary material

12649_2017_104_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 64 KB)

References

  1. 1.
    Plangklang, P., Reungsang, A., Pattra, S.: Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse. Int. J. Hydrog. Energy 37(20), 15525–15532 (2012). doi: 10.1016/j.ijhydene.2012.02.186 Google Scholar
  2. 2.
    Jones, D.L.: Potential air emission impacts of cellulosic ethanol production at seven demonstration refineries in the United States. J. Air & Waste Manag. Assoc. 60(9), 1118–1143 (2010)Google Scholar
  3. 3.
    Liu, G., Liao, Y., Guo, S., Ma, X., Zeng, C., Wu, J.: Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process. Appl. Therm. Eng. 98, 400–408 (2016). doi: 10.1016/j.applthermaleng.2015.12.067 Google Scholar
  4. 4.
    Moodley, P., Kana, E.B.G.: Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int. J. Hydrog. Energy 40(10), 3859–3867 (2015). doi: 10.1016/j.ijhydene.2015.01.087 Google Scholar
  5. 5.
    Gonçalves, G.d.C., Pereira, N.C., Veit, M.T.: Production of bio-oil and activated carbon from sugarcane bagasse and molasses. Biomass Bioenergy. 85, 178–186 (2016). doi: 10.1016/j.biombioe.2015.12.013 Google Scholar
  6. 6.
    Hossain, A.K., Serrano, C., Brammer, J.B., Omran, A., Ahmed, F., Smith, D.I., Davies, P.A.: Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel 171, 18–28 (2016). doi: 10.1016/j.fuel.2015.12.012 Google Scholar
  7. 7.
    Xu, R., Ferrante, L., Briens, C., Berruti, F.: Bio-oil production by flash pyrolysis of sugarcane residues and post treatments of the aqueous phase. J. Anal. Appl. Pyrolysis 91(1), 263–272 (2011). doi: 10.1016/j.jaap.2011.03.001 Google Scholar
  8. 8.
    Tang, Y.-Q., An, M.-Z., Zhong, Y.-L., Shigeru, M., Wu, X.-L., Kida, K.: Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. J. Biosci. Bioeng. 109(1), 41–46 (2010). doi: 10.1016/j.jbiosc.2009.07.002 Google Scholar
  9. 9.
    Koike, Y., An, M.-Z., Tang, Y.-Q., Syo, T., Osaka, N., Morimura, S., Kida, K.: Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J. Biosci. Bioeng. 108(6), 508–512 (2009). doi: 10.1016/j.jbiosc.2009.06.007 Google Scholar
  10. 10.
    Shahsavarani, H., Hasegawa, D., Yokota, D., Sugiyama, M., Kaneko, Y., Boonchird, C., Harashima, S.: Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14. J. Biosci. Bioeng. 115(1), 20–23 (2013). doi: 10.1016/j.jbiosc.2012.07.018 Google Scholar
  11. 11.
    Schneiderman, S.J., Johnson, R.W., Menkhaus, T.J., Gilcrease, P.C.: Quantifying second generation ethanol inhibition: design of experiments approach and kinetic model development. Bioresour. Technol. 179, 219–226 (2015). doi: 10.1016/j.biortech.2014.11.087 Google Scholar
  12. 12.
    Zhang, G.-C., Liu, J.-J., Kong, I.I., Kwak, S., Jin, Y.-S.: Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol. 29, 49–57 (2015). doi: 10.1016/j.cbpa.2015.09.008 Google Scholar
  13. 13.
    Hu, X., Wang, S., Wu, L., Dong, D., Mahmudul Hasan, M., Li, C.-Z.: Acid-treatment of C5 and C6 sugar monomers/oligomers: Insight into their interactions. Fuel Process. Technol. 126, 315–323 (2014). doi: 10.1016/j.fuproc.2014.05.024 Google Scholar
  14. 14.
    Li, Y.-C., Li, G.-Y., Gou, M., Xia, Z.-Y., Tang, Y.-Q., Kida, K.: Functional expression of xylose isomerase in flocculating industrial Saccharomyces cerevisiae strain for bioethanol production. J. Biosci. Bioeng. 121(6), 685–691 (2016). doi: 10.1016/j.jbiosc.2015.10.013 Google Scholar
  15. 15.
    Kupiainen, L., Ahola, J., Tanskanen, J.: Kinetics of glucose decomposition in formic acid. Chem. Eng. Res. Des. 89(12), 2706–2713 (2011). doi: 10.1016/j.cherd.2011.06.005 Google Scholar
  16. 16.
    Huang, Y.-B., Fu, Y.: Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 15(5), 1095–1111 (2013). doi: 10.1039/C3GC40136G Google Scholar
  17. 17.
    Boochapun, S., Lamamorphanth, W., Kamwilaisak, K.: The acid hydrolysis of sugarcane leaves as a biofeedstook for bioethanol production. Adv. Mater. Res. 931–932, 194–199 (2014). doi: 10.4028/www.scientific.net/AMR.931-932.194 Google Scholar
  18. 18.
    Jeffries, T.W.: Utilization of xylose by bacteria, yeasts, and fungi. Adv. Biochem. Eng. Biotechnol. 27, 1–32 (1983)Google Scholar
  19. 19.
    Cavka, A., Jo¨nsson, L.J.: Comparison of the growth of filamentous fungi and yeasts in lignocellulose-derived media. Biocatal. Agric. Biotechnol. 3(4), 197–204 (2014). doi: 10.1016/j.bcab.2014.04.003 Google Scholar
  20. 20.
    Abbi, M., Kuhad, R.C., Singh, A.: Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): fermentation behaviour. Process Biochem. 31(6), 555–560 (1996). doi: 10.1016/S0032-9592(95)00104-2 Google Scholar
  21. 21.
    Delgenes, J.P., Moletta, R., Navarro, J.M.: Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 19(3), 220–225 (1996). doi: 10.1016/0141-0229(95)00237-5 Google Scholar
  22. 22.
    Zhao, L., Yu, J., Zhang, X., Tan, T.: The ethanol tolerance of pachysolen tannophilus in fermentation on Xylose. Appl. Biochem. Biotechnol. 160(2), 378–385 (2010). doi: 10.1007/s12010-008-8308-y Google Scholar
  23. 23.
    Burdon, R.H., Paul, P.H.V.K., Paul T.S.: Chap. 2: methods of cell counting and assaying cell viability. In: Burdon, R.H., Paul, P.H.v.K., T.S. (eds.) Laboratory techniques in biochemistry and molecular biology, vol. 18. pp. 7–17. Elsevier, Amsterdam (1988)Google Scholar
  24. 24.
    Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991). doi: 10.3168/jds.S0022-0302(91)78551-2 Google Scholar
  25. 25.
    Kobayashi, H., Ito, Y., Komanoya, T., Hosaka, Y., Dhepe, P.L., Kasai, K., Hara, K., Fukuoka, A.: Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem. 13(2), 326–333 (2011). doi: 10.1039/C0GC00666A Google Scholar
  26. 26.
    Playne, M.J.: Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. J. Sci. Food Agric. 36(8), 638–644 (1985). doi: 10.1002/jsfa.2740360803 Google Scholar
  27. 27.
    Omari, K.W., Besaw, J.E., Kerton, F.M.: Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem. 14(5), 1480–1487 (2012). doi: 10.1039/C2GC35048C Google Scholar
  28. 28.
    Harmsen, P., Huijgen, W., Bermudez, L., Bakker, R.: Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Energy Research Centre of the Netherlands, Petten, pp. 10–13 (2010)Google Scholar
  29. 29.
    Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014). doi: 10.1016/j.rser.2014.04.047 Google Scholar
  30. 30.
    Argun, H., Onaran, G.: Glucose and 5-hydroxymethylfurfural production from cellulosic waste by sequential alkaline and acid hydrolysis. Renew. Energy 96(Part A), 442–449 (2016). doi: 10.1016/j.renene.2016.04.082 Google Scholar
  31. 31.
    Riansa-ngawong, W., Prasertsan, P.: Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process. Carbohydr. Res. 346(1), 103–110 (2011). doi: 10.1016/j.carres.2010.10.009 Google Scholar
  32. 32.
    Antal, M.J. Jr., Leesomboon, T., Mok, W.S., Richards, G.N.: Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr. Res. 217(C), 71–85 (1991). doi: 10.1016/0008-6215(91)84118-X Google Scholar
  33. 33.
    He, J., Zhang, W., Liu, X., Xu, N., Xiong, P.: Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue. J. Biosci. Bioeng. 122(5), 563–569 (2016). doi: 10.1016/j.jbiosc.2016.04.012 Google Scholar
  34. 34.
    Robinson, J.M., Burgess, C.E., Bently, M.A., Brasher, C.D., Horne, B.O., Lillard, D.M., Macias, J.M., Mandal, H.D., Mills, S.C., O’Hara, K.D.: The use of catalytic hydrogenation to intercept carbohydrates in a dilute acid hydrolysis of biomass to effect a clean separation from lignin. Biomass Bioenergy 26(5), 473–483 (2004)Google Scholar
  35. 35.
    Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L.: Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. 101(3), 1036–1043 (2010). doi: 10.1016/j.biortech.2009.08.091 Google Scholar
  36. 36.
    da Silva, A.S.A., Inoue, H., Endo, T., Yano, S., Bon, E.P.S.: Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101(19), 7402–7409 (2010). doi: 10.1016/j.biortech.2010.05.008 Google Scholar
  37. 37.
    Cheung, S.W., Anderson, B.C.: Ethanol production from wastewater solids, Water Environment and Technology, Medium: X Size pp. 55–60 (1996)Google Scholar
  38. 38.
    Hilpmann, G., Becher, N., Pahner, F.A., Kusema, B., Mäki-Arvela, P., Lange, R., Murzin, D.Y., Salmi, T.: Acid hydrolysis of xylan. Catal. Today 259, 376–380 (2016). doi: 10.1016/j.cattod.2015.04.044 Google Scholar
  39. 39.
    Mäki-Arvela, P., Salmi, T., Holmbom, B., Willför, S., Murzin, D.Y.: Synthesis of sugars by hydrolysis of hemicelluloses- a review. Chem. Rev. 111(9), 5638–5666 (2011). doi: 10.1021/cr2000042 Google Scholar
  40. 40.
    Aguilar, R., Ramírez, J.A., Garrote, G., Vázquez, M.: Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 55(4), 309–318 (2002). doi: 10.1016/S0260-8774(02)00106-1 Google Scholar
  41. 41.
    Rodríguez-Chong, A., Alberto Ramírez, J., Garrote, G., Vázquez, M.: Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng. 61(2), 143–152 (2004). doi: 10.1016/S0260-8774(03)00080-3 Google Scholar
  42. 42.
    Lin, T.-H., Huang, C.-F., Guo, G.-L., Hwang, W.-S., Huang, S.-L.: Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresour. Technol. 116, 314–319 (2012). doi: 10.1016/j.biortech.2012.03.089 Google Scholar
  43. 43.
    Mozes, N., Schinckus, L.L., Ghommidh, C., Navarro, J.-M., Rouxhet, P.G.: Influence of medium composition on surface properties and aggregation of a Saccharomyces cerevisiae strain. Colloids Surf. B. 3(1–2), 63–74 (1994). doi: 10.1016/0927-7765(93)01113-6 Google Scholar
  44. 44.
    Nigam, J.N.: Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. 87(1), 17–27 (2001). doi: 10.1016/S0168-1656(00)00385-0 Google Scholar
  45. 45.
    Cheng, C., Zhang, M., Xue, C., Bai, F., Zhao, X.: Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: new aspects from cell flocculation and zinc supplementation. J. Biosci. Bioeng. 123(2), 141–146 (2017). doi: 10.1016/j.jbiosc.2016.07.021 Google Scholar
  46. 46.
    Hickert, L.R., da Cunha-Pereira, F., de Souza-Cruz, P.B., Rosa, C.A., Ayub, M.A.Z.: Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresour. Technol. 131, 508–514 (2013). doi: 10.1016/j.biortech.2012.12.135 Google Scholar
  47. 47.
    Chandel, A.K., Singh, O.V., Rao, L.V., Chandrasekhar, G., Narasu, M.L.: Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresour. Technol. 102(2), 1709–1714 (2011). doi: 10.1016/j.biortech.2010.08.016 Google Scholar
  48. 48.
    Chandel, A.K., Kapoor, R.K., Singh, A., Kuhad, R.C.: Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98(10), 1947–1950 (2007). doi: 10.1016/j.biortech.2006.07.047 Google Scholar
  49. 49.
    Lin, T.-H., Guo, G.-L., Hwang, W.-S., Huang, S.-L.: The addition of hydrolyzed rice straw in xylose fermentation by Pichia stipitis to increase bioethanol production at the pilot-scale. Biomass Bioenergy. 91, 204–209 (2016). doi: 10.1016/j.biombioe.2016.05.012 Google Scholar
  50. 50.
    Taherzadeh, M.J., Gustafsson, L., Niklasson, C., Liden, G.: Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53(6), 701–708 (2000)Google Scholar
  51. 51.
    Sanchez, B., Bautista, J.: Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzym. Microb. Technol. 10(5), 315–318 (1988). doi: 10.1016/0141-0229(88)90135-4 Google Scholar
  52. 52.
    Gorke, B., Stulke, J.: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev Microbiol. 6(8), 613–624 (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Pasakorn Jutakridsada
    • 1
  • Khwantri Saengprachatanarug
    • 2
  • Pornnapa Kasemsiri
    • 1
  • Salim Hiziroglu
    • 3
  • Khanita Kamwilaisak
    • 1
    Email author
  • Prinya Chindaprasirt
    • 4
  1. 1.Department of Chemical Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Agricultural Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand
  3. 3.Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterUSA
  4. 4.SIRDC-Sustainable Infrastructure Research and Development, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand

Personalised recommendations