Waste and Biomass Valorization

, Volume 10, Issue 4, pp 909–923 | Cite as

Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation

  • Nihat Alpagu Sayar
  • Orkun Pinar
  • Dilek Kazan
  • Ahmet Alp SayarEmail author
Original Paper


The main objective of the current study is to develop and assess the preliminary synthetic design steps of an innovative and unprecedented bioprocess plant converting Turkish hazelnut husk into lignocellulosic ethanol with an emphasis on economic evaluation. Valorization of this agricultural waste would provide a promising economic potential and long-term sustainability with acceptable environmental impact. Preliminary economic evaluations are performed on several scenarios where the effects of changing various process design and operational inputs such as designed plant capacity, evaporation unit operation efficiency, and biocatalyst and nitrogen source prices are simulated. The total capital investment for the base case scenario with an annual throughput of 180,000 metric tons (MT) hazelnut husk is just above USD 111 million. The annual operational costs for this case amount to USD 61 million. Assuming a sales price of USD 1.50 per kg of bioethanol (achieved via governmental subsidy and tax incentives) the return on investment of the project comes to 12.61% with a 8 year payback period. An uncertainty analysis performed on the annual hazelnut husk availability and biocatalyst and nitrogen source price fluctuations establishes a basis for further design of the process taking into account the risk factors associated with the project. The case studies and the uncertainty analysis confirm the fact that production of second generation bioethanol from hazelnut husk in Turkey is a worthwhile endeavor with an economic potential especially with additional social and environmental advantages.


Bioethanol Process design Economic evaluation Uncertainty analysis Hazelnut husk Process simulation 



This research was supported by Marmara University, Scientific Research Projects Committee (BAPKO) by the Project Number FEN-E-130313-0077.


  1. 1.
    Ajanovic, A.: Biofuels versus food production: does biofuels production increase food prices? Energy. 36, 2070–2076 (2011)CrossRefGoogle Scholar
  2. 2.
    Fischer, G., Hizsynik, E., Prieler, S., Shah, M., van Velthuizen, H.: Biofuels, Security, Food. Vienna, OFID/IIASA, Stiepan Druck GmbH. (2009). Accessed 12 May 2017
  3. 3.
    Searle, S., Malins, C.: A reassessment of global bioenergy potential in 2050. GCB Bioenergy. 7, 328–336 (2015)CrossRefGoogle Scholar
  4. 4.
    Guney, M.S.: Utilization of hazelnut husk as biomass. Sustainable Energy Technol. Assess. 4, 72–77 (2013)CrossRefGoogle Scholar
  5. 5.
    OCEM: Hazelnut Production Statistics. Ordu Commodity Exchange Market. (2015). Accessed 12 May 2017
  6. 6.
    Ceylan, S., Topçu, Y.: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresource. Technol. 156, 182–188 (2014)CrossRefGoogle Scholar
  7. 7.
    De Franchi, M., Boubaker, K.: Valorization of hazelnut biomass framework in Turkey: support and model guidelines from the italian experience in the field of renewable energy. Int. J. Sustain. Energy Environ. Res. 3, 130–144 (2014)Google Scholar
  8. 8.
    Stévigny, C., Rolle, L., Valentini, N., Zeppa, G.: Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. J. Sci. Food Agric. 87, 2817–2822 (2007)CrossRefGoogle Scholar
  9. 9.
    Çimen, F., Ok, S.S., Kayran, C., Demirci, Ş., Özenç, D.B., Özenç, N.: Characterization of humic materials extracted from hazelnut husk and hazelnut husk amended soils. Biodegradation. 18, 295–301 (2007)CrossRefGoogle Scholar
  10. 10.
    Brás, I., Figueirinha, A., Esteves, B., Cruz-Lopes, L.P.: Valorization of lignocellulosic wastes–evaluation of its toxicity when used in adsorption systems. World Acad. Sci. Eng. Technol. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 8, 443–447 (2014)Google Scholar
  11. 11.
    Gnansounou, E., Dauriat, A.: Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour. Technol. 101, 4980–4991 (2010)CrossRefGoogle Scholar
  12. 12.
    Larsen, J., Petersen, M.Ø., Thirup, L., Li, H.W., Iversen, F.K.: The IBUS process–lignocellulosic bioethanol close to a commercial reality. Chem. Eng. Technol. 31, 765–772 (2008)CrossRefGoogle Scholar
  13. 13.
    Lee, S., Posarac, D., Ellis, N.: Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem. Eng. Res. Des. 89, 2626–2642 (2011)CrossRefGoogle Scholar
  14. 14.
    Morales-Rodriguez, R., Meyer, A.S., Gernaey, K.V., Sin, G.: Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose. Bioresour. Technol. 102, 1174–1184 (2011)CrossRefGoogle Scholar
  15. 15.
    Prunescu, R.M., Sin, G.: Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process—a demonstration scale study. Bioresour. Technol. 150, 393–403 (2013)CrossRefGoogle Scholar
  16. 16.
    Sotoft, L.F., Rong, B.G., Christensen, K.V., Norddahl, B.: Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresour. Technol. 101, 5266–5274 (2010)CrossRefGoogle Scholar
  17. 17.
    Yun, H., Wang, M., Feng, W., Tan, T.: Process simulation and energy optimization of the enzyme-catalyzed biodiesel production. Energy. 54, 84–96 (2013)CrossRefGoogle Scholar
  18. 18.
    Barrera, I., Amezcua-Allieri, M.A., Estupiñan, L., Martínez, T., Aburto, J.: Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem. Eng. Res. Des. 107, 91–101 (2016)CrossRefGoogle Scholar
  19. 19.
    Brunet, R., Boer, D., Guillén-Gosálbez, G., Jiménez, L.: Reducing the cost, environmental impact and energy consumption of biofuel processes through heat integration. Chem. Eng. Res. Des. 93, 203–212 (2015)CrossRefGoogle Scholar
  20. 20.
    Ferrari, M.D., Guigou, M., Lareo, C.: Energy consumption evaluation of fuel bioethanol production from sweet potato. Bioresour. Technol. 136, 377–384 (2013)CrossRefGoogle Scholar
  21. 21.
    Gunukula, S., Keeling, P.L., Anex, R.: Risk advantages of platform technologies for biorenewable chemical production. Chem. Eng. Res. Des. 107, 24–33 (2016)CrossRefGoogle Scholar
  22. 22.
    Mabrouki, J., Abbassi, M.A., Guedri, K., Omri, A., Jeguirim, M.: Simulation of biofuel production via fast pyrolysis of palm oil residues. Fuel. 159, 819–827 (2015)CrossRefGoogle Scholar
  23. 23.
    Ramirez, E.C., Johnston, D.B., McAloon, A.J., Yee, W., Singh, V.: Engineering process and cost model for a conventional corn wet milling facility. Ind. Crops Prod. 27, 91–97 (2008)CrossRefGoogle Scholar
  24. 24.
    Rouf, S., Douglas, P., Moo-Young, M., Scharer, J.: Computer simulation for large scale bioprocess design. Biochem. Eng. J. 8, 229–234 (2001)CrossRefGoogle Scholar
  25. 25.
    Çöpür, Y., Güler, C., Akgül, M., Taşçıoğlu, C.: Some chemical properties of hazelnut husk and its suitability for particleboard production. Build. Environ. 47, 2568–2572 (2007)CrossRefGoogle Scholar
  26. 26.
    Bondesson, P.M., Galbe, M., Zacchi, G.: Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol. Biofuels. 6, 6–11 (2013)CrossRefGoogle Scholar
  27. 27.
    Liu, Z.H., Chen, H.Z.: Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. Bioresour. Technol. 193, 345–356 (2015)CrossRefGoogle Scholar
  28. 28.
    Lima-Costa, M.E., Tavares, C., Raposo, S., Rodrigues, B., Peinado, J.M.: Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures. J. Ind. Microbiol. Biotechnol. 39, 789–797 (2012)CrossRefGoogle Scholar
  29. 29.
    Talebnia, F., Karakashev, D., Angelidaki, I.: Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101, 4744–4753 (2010)CrossRefGoogle Scholar
  30. 30.
    Varga, E., Réczey, K., Zacchi, G.: Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotechnol. 114, 509–523 (2004)CrossRefGoogle Scholar
  31. 31.
    Diao, L., Liu, Y., Qian, F., Yang, J., Jiang, Y., Yang, S.: Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotecnol. 13(110), 1–9 (2013)Google Scholar
  32. 32. Accessed 01 Aug 2017
  33. 33. Accessed 01 Aug 2017
  34. 34. Accessed 01 Aug 2017
  35. 35. Accessed 01 Aug 2017
  36. 36. Accessed 01 Aug 2017
  37. 37. Accessed 01 Aug 2017
  38. 38.
    Peters, M.S., Timmerhaus, K.D., West, R.E.: Plant Design and Economics for Chemical Engineers. McGraw Hill, New York (2004)Google Scholar
  39. 39.
    Özen, R., Sayar, N.A., Durmaz-Sam, S., Sayar, A.A.: A sigmoidal model for biosorption of heavy metal cations from aqueous media. Math. Biosci. 265, 40–46 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Miller, N., Christensen, A., Park, J.E., Baral, A., Malins, C., Searle, C.S.: Measuring and Addressing Investment Risk in the Second-Generation Biofuels Industry. International Council on Clean Transportation, Washington (2013)Google Scholar
  41. 41.
    EC: Horizon 2020 Work Programme 2016–2017 5ii. Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing. European Commission, Luxembourg (2015)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Nihat Alpagu Sayar
    • 1
  • Orkun Pinar
    • 1
  • Dilek Kazan
    • 1
  • Ahmet Alp Sayar
    • 1
    Email author
  1. 1.Department of Bioengineering, Faculty of EngineeringMarmara UniversityKadikoy-IstanbulTurkey

Personalised recommendations