Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 953–965 | Cite as

Nanostructural, Chemical, and Thermal Changes of Oil Palm Empty Fruit Bunch Cellulose Nanofibers Pretreated with Different Solvent Extractions

  • Achmad SolikhinEmail author
  • Yusuf Sudo Hadi
  • Muh Yusram Massijaya
  • Siti Nikmatin
Original Paper

Abstract

The aim of this study was to analyze the effect of different extraction solvents in cellulose nanofibers (CNFs) isolation and properties, including nanostructures, chemical functional groups, chemical substances, and thermal stabilities. Physical oven-dried CNFs had a varied diameter of self-aggregated nanofibers from 2 to 20 µm with different aggregate shapes of nanofibers, whereas individual nanostructure of CNFs suspension was akin to grape-like flocking nanofibers with a diameter of about 50 nm. FTIR spectra showed that hot water extraction for CNFs isolation was able to remove low-molecular weight carbohydrates (hemicellulose and pectin), whereas ethanol and ethanol/benzene extraction for CNFs isolation was able to remove tannin, fatty acids, and waxes. However, amorphous lignin was still present indicated with IR transmission peak at 1558 cm−1. Carboxylic acids, esters, ketones, and benzoyl units were the chemical compounds of CNFs, indicating the presence of cellulose, hemicellulose, and lignin in which long-chain fatty acids were the most dominant compounds. There were five thermal degradation peaks for ethanol- and hot water-pretreated CNFs thermal stability, whereas ethanol/benzene- and non-extraction-pretreated CNFs had four thermal degradation peaks. Solvent-pretreated CNFs had better thermal stability and higher char residue obtained above 8.51% than that of non-extracted-pretreated CNFs.

Keywords

Solvent extraction Cellulose nanofibers Nanostructures Chemical changes Thermal stability 

Notes

Acknowledgements

We thank the Doctoral Programme for Outstanding Undergraduate Students Secretariat, Directorate of Higher Education (DIKTI), Ministry of Research, Technology, and Higher Education, Republic of Indonesia [Grant No. 157/SP2H/PL/506 Dit.Litabmas/II/2015 February 5, 2015, PMDSU 2016–2017] due to the financial support given. We sincerely acknowledge the assistance of technicians at PT Perkebunan Kelapa Sawit Nusantara VIII, Bogor Agricultural University, Bandung Institute of Technology, Universitas Indonesia, University of Gadjah Mada, Great Office of Indonesia Police, Indonesian Institute of Sciences, National Agency for Atomic Energy, and the Forest Products Research and Development Agency because of his tremendous assistance for the research completion.

References

  1. 1.
    Abdullah, S.S.S., Hassan, M.A., Shirai, Y., Funaoka, M., Shinano, T., Idris, A.: Effect of solvent pre-treatment on lignophenol production from oil palm empty fruit bunch fibers. J. Oil Palm Res. 21, 700–709 (2009)Google Scholar
  2. 2.
    Ajuong, E.M.A., Breese, M.C.: The role of extractives on short-term creep in compression parallel to the grain of pai wood (Afzelia africana smith). Wood Fiber Sci. 29(2), 161–170 (1997)Google Scholar
  3. 3.
    Alince, B.: Porosity of swollen solvent-exchanged cellulose and its collapse during final liquid removal. Colloid Polym. Sci. 253, 720–2729 (1975)CrossRefGoogle Scholar
  4. 4.
    Amin, N.A.S., Misson, M., Haron, R., Kamaroddin, M.F.A., Omar, W.N.N.W., Haw, K.-G.: Bio-oils and diesel fuel derived from alkaline treated empty fruit bunch (EFB). Int. J. Biomass Renew. 1, 6–14 (2012)Google Scholar
  5. 5.
    Ayeni, A.O., Adeeyo, O.A., Oresegun, O.M., Oladimeji, T.E.: Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass Am. J. Eng. Res. 4(4), 14–19 (2015)Google Scholar
  6. 6.
    Bahmaei, M., Badiee, F., Kasehgari, H.,. Synthesis, I.R.: HPLC analysis and performances of palm fatty acids and triethanolamine-based esterquats. J. Surfactants. Deterg. 14(2011), 173–177 (2011)CrossRefGoogle Scholar
  7. 7.
    Boeing, J.S., Barizão, E.O., e Silva, B.C., Montanher, P.V., Almeida, V.C., Visentainer, J.V.: Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem. Cent. J. 8(1), 48 (2014)CrossRefGoogle Scholar
  8. 8.
    Castro, M.A.P., Rodríguez, H.G.: Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev. Latinoamer. Quím. 39(3), 107–112 (2011)Google Scholar
  9. 9.
    Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M.: Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725 (2010)CrossRefGoogle Scholar
  10. 10.
    Chirayil, C., Mathew, L., Thomas, S.: Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev. Adv. Mater. Sci. 37, 20–28 (2014)Google Scholar
  11. 11.
    Conrad, C.M.: Determination of’ wax in cotton fiber: A new alcohol extraction method. Ind. Eng. Chem. 16(12), 745–748 (1944)Google Scholar
  12. 12.
    Costa, L.A., Fonsêca, A.F., Pereira, F.V., Druzian, J.I.: Extraction and characterization of cellulose nanocrystals from corn stover. Cellul. Chem. Technol. 49(2), 127–133 (2015)Google Scholar
  13. 13.
    Dai, D., Fan, M., Collins, P.: Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fibers. Ind. Crops Prod.m. 44(2013), 192–199 (2014)Google Scholar
  14. 14.
    Das, S.K., Bedar, A., Kannan, A., Jasuja, K.: Aqueous dispersions of few layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci. Rep. 5, 10522 (2015)CrossRefGoogle Scholar
  15. 15.
    Duarte, G.V., Ramarao, B.V., Amidon, T.E., Ferreira, P.T.: Effect of hot water extraction on hardwood kraft pulp fibers (Acer saccharum, sugar maple). Ind. Eng. Chem. Res. 50, 9949–9959 (2011)CrossRefGoogle Scholar
  16. 16.
    Dufresne, A.: Nanocellulose: from Nature to High Performance Tailored Materials. De Gruyter, Boston (2012)CrossRefGoogle Scholar
  17. 17.
    Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Mater. Today. 16(6), 220–227 (2013)CrossRefGoogle Scholar
  18. 18.
    Fan, S.-P., Zakaria, S., Chia, C.-H., Jamaluddin, F., Nabihah, S., Liew, T.-K., Pua, F.-L.: Comparative studies of products obtained from solvolysis liquefaction of oil palm empty fruit bunch fibres using different solvents. Bioresour. Technol. 102, 3521–3526 (2011)CrossRefGoogle Scholar
  19. 19.
    Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J.M., Torre, L.: Binary PVA bi-nanocomposites containing cellulose nanocrystals extracted from different natural resources: part I. Carbohydr. Polym. 97, 825–836 (2013)CrossRefGoogle Scholar
  20. 20.
    Hamid, S.B.A., Zain, S.K., Das, R., Centi, G.: Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr. Polym. 138, 349–355 (2015)CrossRefGoogle Scholar
  21. 21.
    Hosseinihashemi, S.K., Salem, M.Z.M., Ashrafi, H.S.K., Latibari, A.J.: Chemical composition and antioxidant activity of extract from the wood of Fagus orientalis: water resistance and decay resistance against Trametes versicolor. Bioresources. 11(2), 3890–3903 (2016)CrossRefGoogle Scholar
  22. 22.
    Ibrahim, S.M., Badri, K.H., Hassan, O.: A study on glycerolysis of oil palm empty fruit bunch fiber. Sains Malaysiana. 41(12), 1579–1585 (2012)Google Scholar
  23. 23.
    Ismail, N.S.M., Ramli, N., Hani, N.M., Meon, Z.: Extraction and characterization of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malaysiana. 41(1), 41–45 (2012)Google Scholar
  24. 24.
    Jahan, M.S., Saeed, A., He, Z., Ni, Y.: Jute as raw material for the preparation of microcrystalline cellulose. Cellulose. 18(2011), 451–459 (2011)CrossRefGoogle Scholar
  25. 25.
    Junior, D.L., Ayoub, A., Venditti, R.A., Jameel, H., Colodette, J.L., Chang, H.-m.: Ethanol precipitation of hetero-polysaccharide material from hardwood by alkaline extraction prior to the Kraft cooking process. BioResources. 8(4), 5319–5332 (2013)Google Scholar
  26. 26.
    Karimi, K., Shafiei, M., Kumar, R.: Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta, V.K., Tuohy, M.G. (eds.) Biofuel Technology, pp. 61–62. Springer, Berlin (2013)Google Scholar
  27. 27.
    Khazraji, A.C., Robert, S.: Interaction effects between cellulose and water in nanocrystalline and amorphous regions: A novel approach using molecular modeling. J. Nanomater. 2013, 1–10 (2013)Google Scholar
  28. 28.
    Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K.: Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J. Mater. Phys. Chem. 2(1), 1–8 (2014)Google Scholar
  29. 29.
    Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J.: Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym. 90(2012), 1609–1613 (2012)CrossRefGoogle Scholar
  30. 30.
    Ma, X.J., Cao, S.L., Yang, X.F., Chen, L.H., Huang, L.L.: Lignin removal and benzene-alcohol extraction effects on lignin measurements of the hydrothermal pretreated bamboo substrate. Bioresour. Technol. 151, 244–248 (2014)CrossRefGoogle Scholar
  31. 31.
    Maiti, S., Jayaramudu, J., Dasa, K., Reddy, S.M., Sadiku, R., Ray, S.S., Liu, D.: Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohyd. Polym. 98(1), 562–567 (2013)CrossRefGoogle Scholar
  32. 32.
    Mandal, A., Chakrabarty, D.: Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd. Polym. 86(3), 1291–1299 (2011)CrossRefGoogle Scholar
  33. 33.
    Mary, K.A.N., Unnikrishnan, N.V., Philip, R.: Cubic to amorphous transformation of Se in silica with improved ultrafast optical nonlinearity. RCS Adv. 5, 14034–14041 (2015)Google Scholar
  34. 34.
    Mohebby, B.: Application of ATR infrared spectroscopy in wood acetylation. J. Agric. Sci. Technol. 10, 253–259 (2008)Google Scholar
  35. 35.
    Moran, J.I., Alvarez, V.A., Cyras, V.P., Va´zquez, A.: Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149–159 (2008)CrossRefGoogle Scholar
  36. 36.
    Nazir, M.S., Wahjoedi, B.A., Yussof, A.W., Abdullah, M.A.: Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. Bioresources. 8(2), 2161–2172 (2013)CrossRefGoogle Scholar
  37. 37.
    Ng, S.P., Tan, C.P., Lai, O.M., Long, K., Mirhosseini, H.: Extraction and characterization of dietary fiber from coconut residue. J. Food Agric. Environ. 8(2), 172–177 (2010)Google Scholar
  38. 38.
    Oh, S.Y., Yoo, D.I., Shin, Y., Kim, C.H., Kim, Y.H., Chung, S.Y., Park, W.H., Youk, J.H.: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340, 2376–2391 (2005)CrossRefGoogle Scholar
  39. 39.
    Orona, V.U., Chu, A.R., Mendoza, J.L., Millán, E.C., Gardea, A.A., Wong, B.R.: A novel pectin material: extraction, characterization and gelling properties. Int. J. Mol. Sci. 11, 3686–3695 (2010)CrossRefGoogle Scholar
  40. 40.
    Oun, A.A., Rhim, J.W.: Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohydr. Polym. 134, 20–29 (2015)CrossRefGoogle Scholar
  41. 41.
    Pelaez-Samaniego, M. R., Yadama, V., Lowell, E., Amidon, T. E., Chaffee, T. L.: Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung 67(2), 193–200 (2013)CrossRefGoogle Scholar
  42. 42.
    Puică, N.M., Pui, A., Florescu, M.: FTIR spectroscopy for the analysis of vegetable tanned ancient leather. Eur. J. Sci. Theol. 2(4), 49–53 (2006)Google Scholar
  43. 43.
    Pyrz, W.D., Buttrey, D.J.: Particle size determination using tem: a discussion of image acquisition and analysis for the novice microscopist. Langmuir. 24(20), 11350–11360 (2008)CrossRefGoogle Scholar
  44. 44.
    Ramos, L.P.: The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova. 26(6), 863–871 (2003)CrossRefGoogle Scholar
  45. 45.
    Rosli, N.A., Ahmad, I., Abdullah, I.: Isolation and characterization of cellulose nanocrystal from Agave angustifolia fibre. Bioresources. 8(2), 1893–1908 (2013)CrossRefGoogle Scholar
  46. 46.
    Rowe, J.H.: Symposium on extractives: utilization problem or fine chemical resource? J. Agric. Food Chem. 28(2), 169–170 (1980)CrossRefGoogle Scholar
  47. 47.
    Roy, C., Pakdel, H., Brouillard, D.: The role of extractives during vacuum pyrolysis of wood. J. Appl. Polym. Sci. 41, 337–348 (1990)CrossRefGoogle Scholar
  48. 48.
    Schwanninger, M., Hinterstoisser, B.: Comparison of the classical wood extraction method using a Soxhlet apparatus with an advanced extraction method. Holz Roh Werkst. 60(5), 343–346 (2002)CrossRefGoogle Scholar
  49. 49.
    Shankar, S., Rhim, J.-W.: Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr. Polym. 135, 18–26 (2016)CrossRefGoogle Scholar
  50. 50.
    Sembiring, K.C., Rinaldia, N., Simanungkalita, S.P.: Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energy Procedia. 65, 162–169 (2015)CrossRefGoogle Scholar
  51. 51.
    Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S.: Basic properties of oven-heat treated oil palm empty fruit bunch stalk fibers. Bioresources. 11, 2224–2237 (2016)CrossRefGoogle Scholar
  52. 52.
    Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S.: Novel isolation of empty fruit bunch lignocellulose nanofibers using different vibration milling times-assisted multimechanical stages. Waste Biomass Valoriz. 1–12 (2016). doi: 10.1007/s12649-016-9765-0
  53. 53.
    Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S.: Morphological and chemo-thermal changes of oven-heat treated oil palm empty fruit bunch fibers during dry disk milling. J. Indian Acad. Wood Sci. 14(1), 9–17 (2017)CrossRefGoogle Scholar
  54. 54.
    Spence, K., Habibi, Y., Dufresne, A.: Nanocellulose-based composites.. In: Kaith, S., Kaur, B.S., Kalia I., (eds.) Cellulose Fibers: Bio-and Nano-Polymer Composites, pp. 184–185. Springer, Berlin (2011)Google Scholar
  55. 55.
    Sukiran, M.A., Chin, C.M., Bakar, N.K.A.: Bio-oils from pyrolysis of oil palm empty fruit bunches. Am. J. Appl. Sci. 6(5), 869–875 (2009)CrossRefGoogle Scholar
  56. 56.
    Svagan, A.J., Koch, C.B., Hedenqvist, M.S., Nilsson, F., Glasser, G., Baluschev, S., Andersene, M.L.: Liquid-core nanocellulose-shell capsules with tunable oxygen permeability. Carbohydr. Polym. 136, 292–299 (2016)CrossRefGoogle Scholar
  57. 57.
    Szczesniak, L., Rachocki, A., Goc, J.T.: Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 15, 445–451 (2008)CrossRefGoogle Scholar
  58. 58.
    Troni, L.K., Silva, S.M., Meirelles, A.J.A., Ceriani, R.: Study of fatty acid and fatty alcohol formation from hydrolysis of rice bran wax. Chem. Eng. Trans. 32, 1747–1752 (2013)Google Scholar
  59. 59.
    Wang, Y., Wei, X., Li, J., Wang, F., Wang, Q., Kong, L.: Homogeneous isolation of nanocellulose from cotton cellulose by high pressure homogenization. J. Mater. Sci. Chem. Eng. 1, 49–52 (2013)Google Scholar
  60. 60.
    Wong, C., McGowan, T., Bajwa, S.G., Bajwa, D.S.: Impact of fiber treatment on the oil absorption characteristics of plant fibers. Biresources. 11(3), 6452–6463 (2016)Google Scholar
  61. 61.
    Xu, C., Zhu, S., Xing, C., Li, D., Zhu, N., Zhou, H.: Isolation and properties of cellulose nanofibrils from coconut palm petiole by different mechanical process. PLOS ONE. 10(4), e0122123 (2015)CrossRefGoogle Scholar
  62. 62.
    Yahya, M., Lee, H.V., Hamid, S.B.A.: Preparation of nanocellulose via transition metal salt-catalyzed hydrolysis pathway. Bioresources. 10(4), 7627–7639 (2015)CrossRefGoogle Scholar
  63. 63.
    Yoshioka, M., Nishio, Y., Nakamura, S., Kushizaki, Y., Ishiguro, R., Kabutomori, T., Imanishi, T., Shiraishi, N.: Cellulose nanofibers and its applications for resin reinforcements. In: Ven, T.V.D., Godbout, L. (eds.), Cellulose—Fundamental Aspects. InTech, Croatia (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Achmad Solikhin
    • 1
    Email author
  • Yusuf Sudo Hadi
    • 1
  • Muh Yusram Massijaya
    • 1
  • Siti Nikmatin
    • 2
  1. 1.Department of Forest Products, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  2. 2.Department of Physics, Faculty of Mathematics and Natural SciencesBogor Agricultural UniversityBogorIndonesia

Personalised recommendations