Waste and Biomass Valorization

, Volume 10, Issue 4, pp 975–984 | Cite as

Local Sensitivity Analysis of Kinetic Models for Cellulose Pyrolysis

  • Zhujun Dong
  • Li Xie
  • Yang Yang
  • Anthony V. Bridgwater
  • Junmeng CaiEmail author
Original Paper


The first and nth order kinetic models are usually used to describe cellulose pyrolysis. In this work, the local sensitivities of the conversion and derivative conversion with respect to the frequency factor, the logarithm of the frequency factor, the activation energy and the reaction order for the first and nth order kinetic models are calculated by using the finite difference method. The results show that the sensitivities of the first and nth order kinetic models with respect to the activation energy and the logarithm of the frequency factor are significant, while the frequency factor and the reaction order affect the nth order kinetic model slightly. Compared with the frequency factor, the natural logarithm of the frequency factor is a better choice in the parameter estimation of the first and nth order kinetic models.

Graphical Abstract


Pyrolysis Kinetic model Local sensitivity analysis Activation energy Frequency factor 


List of Symbols


Ordinary differential equation


Residual sum of squares




Derivative thermo-gravimetric


Differential scanning calorimetry


Differential thermal analysis under quasi-isothermal, quasi-isobaric conditions


Degree of conversion


Reaction order


Frequency factor


Activation energy


Universal gas constant


Heating rate




Absolute temperature.


Starting temperature


Kinetic parameter in the model


Number of data points



Experimental data


Calculated data


The ith data point


Corresponding kinetic parameter value for cellulose pyrolysis



Financial support from participation in research program at Shanghai Jiao Tong University (Project No. T150PRP31027) is greatly acknowledged.


  1. 1.
    Sindhu, R., Binod, P., Pandey, A.: Biological pretreatment of lignocellulosic biomass—an overview. Bioresour. Technol. 199, 76–82 (2016)CrossRefGoogle Scholar
  2. 2.
    Hassan, H., Lim, J.K., Hameed, B.: Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour. Technol. 221, 645–655 (2016)CrossRefGoogle Scholar
  3. 3.
    Muley, P.D., Henkel, C., Abdollahi, K.K., Marculescu, C., Boldor, D.: A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Convers. Manag. 117, 273–280 (2016)CrossRefGoogle Scholar
  4. 4.
    Sánchez-Jiménez, P.E., Pérez-Maqueda, L.A., Perejón, A., Pascual-Cosp, J., Benítez-Guerrero, M., Criado, J.M.: An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose. 18, 1487–1498 (2011)CrossRefGoogle Scholar
  5. 5.
    Lédé, J.: Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J. Anal. Appl. Pyrolysis. 94, 17–32 (2012)CrossRefGoogle Scholar
  6. 6.
    Paulik, J., Paulik, F.: Complex thermoanalytical method for the simultaneous recording of T, TG, DTG, DTA, TGT, DTGT, TD and DTD curves Part I. Development and characterization of equipment. Thermochim. Acta. 3, 13–15 (1971)CrossRefGoogle Scholar
  7. 7.
    Paulik, F., Bessenyey-Paulik, E., Walther-Paulik, K.: Transformation-governed heating technique in thermal analysis. Part III. Normalisation of experimental conditions. J. Therm. Anal. Calorim. 69, 339–351 (2002)CrossRefGoogle Scholar
  8. 8.
    Paulik, F., Bessenyey-Paulik, E., Walther-Paulik, K.: Differential thermal analysis under quasi-isothermal, quasi-isobaric conditions (Q-DTA) Part II. Water evaporation and the decomposition mechanism of compounds with structural and crystal water. Thermochim. Acta. 424, 75–82 (2004)CrossRefGoogle Scholar
  9. 9.
    White, J.E., Catallo, W.J., Legendre, B.L.: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis. 91, 1–33 (2011)CrossRefGoogle Scholar
  10. 10.
    Várhegyi, G.: Aims and methods in non-isothermal reaction kinetics. J. Anal. Appl. Pyrolysis. 79, 278–288 (2007)CrossRefGoogle Scholar
  11. 11.
    Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models: Wiley, Hoboken, NJ (2004)zbMATHGoogle Scholar
  12. 12.
    Saltelli, A., Tarantola, S., Campolongo, F.: Sensitivity Analysis as an Ingredient of Modeling. Stat. Sci. 15, 377–395 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mezaki, R., Kittrell, J.R.: Parametetric sensitivity in fitting nonlinear kinetic models. Ind. Eng. Chem. 59, 63–69 (1967)CrossRefGoogle Scholar
  14. 14.
    Burnham, A.K., Zhou, X., Broadbelt, L.J.: Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy & Fuels. 29, 2906–2918 (2015)CrossRefGoogle Scholar
  15. 15.
    Antal, M.J., Varhegyi, G., Jakab, E.: Cellulose pyrolysis kinetics: revisited. Ind. Eng. Chem. Res. 37, 1267 (1998)CrossRefGoogle Scholar
  16. 16.
    Lin, Y.-C., Cho, J., Tompsett, G.A., Westmoreland, P.R., Huber, G.W.: Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C. 113, 20097–20107 (2009)CrossRefGoogle Scholar
  17. 17.
    Bradbury, A.G.W.: A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci. 23, 3271–3280 (1979)CrossRefGoogle Scholar
  18. 18.
    Nguyen-Tuan, L., Lahmer, T., Datcheva, M., Schanz, T.: Global and local sensitivity analyses for coupled thermo-hydro-mechanical problems. Int. J. Numer. Anal. Methods Geomech. 41(5), 707–720 (2016). doi:  10.1002/nag.2573 CrossRefGoogle Scholar
  19. 19.
    Santos, K., Lobato, F., Lira, T., Murata, V., Barrozo, M.A.: Sensitivity analysis applied to independent parallel reaction model for pyrolysis of bagasse. Chem. Eng. Res. Des. 90, 1989–1996 (2012)CrossRefGoogle Scholar
  20. 20.
    Xavier, T.P., Lira, T.S., Schettino, M.A. Jr., Barrozo, M.A.S.: A study of pyrolysis of macadamia nut shell: parameteric sensitivity analysis the IPR model. Braz. J. Chem. Eng. 33, 115–122 (2016)CrossRefGoogle Scholar
  21. 21.
    Cai, J.: A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 15, 1331–1340 (2013)CrossRefGoogle Scholar
  22. 22.
    Carrier, M., Auret, L., Bridgwater, A., Knoetze, J.H.: Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy & Fuels. 30, 7834–7841 (2016)CrossRefGoogle Scholar
  23. 23.
    Sørensen, O.T., Rouquerol, J. (eds.): Sample Controlled Thermal Analysis: Origin, Goals, Multiple Forms Applications and Future. Springer, New York, (2013)Google Scholar
  24. 24.
    Cai, J., Yao, F., Yi, W., He, F.: New temperature integral approximation for nonisothermal kinetics. ALChE J. 52, 1554–1557 (2006)CrossRefGoogle Scholar
  25. 25.
    Johansen, S.: The Welch-James approximation to the distribution of the residual sum of squares in a weighted linear regression. Biometrika. 67, 85–92 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Morgan, J., Tatar, J.: Calculation of the residual sum of squares for all possible regressions. Technometrics. 14, 317–325 (1972)CrossRefzbMATHGoogle Scholar
  27. 27.
    Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105, 2811–2828 (2005)CrossRefzbMATHGoogle Scholar
  28. 28.
    Saltelli, A., Chan, K., Scott, E.M.: Sensitivity Analysis Wiley, New York, (2009)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Zhujun Dong
    • 1
  • Li Xie
    • 1
  • Yang Yang
    • 2
  • Anthony V. Bridgwater
    • 2
  • Junmeng Cai
    • 1
    Email author
  1. 1.Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Biomass Energy Engineering Research CenterShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Bioenergy Research Group, European Bioenergy Research Institute (EBRI),Aston UniversityBirminghamUK

Personalised recommendations