Waste and Biomass Valorization

, Volume 10, Issue 4, pp 967–973 | Cite as

Pyrolysis of Fresh and Deposited Sewage Sludge and Investigation of the Products

  • Andrey Grachev
  • Sergey ZabelkinEmail author
  • Sergey Burenkov
  • Alexandr Makarov
  • Guzeliia Bikbulatova
  • Sergey Pushkin
  • Ivan Zemskov
Original Paper


The article presents results of studies of pyrolysis of fresh and deposited sewage sludge (DSS) in two regimes of heat input: conductive heating at a rate of 40 °C/s and convective heating at a rate of 10 °C/min. It was determined that the fresh sewage sludge (FSS) had the higher yield of organic liquid and gas, and the lower char yield. The higher heating rate led to a decrease in the char yield and an increase in the liquid yield. The investigation of liquid products showed that those of the FSS had greater proportions of alcohols, organic acids, and nitrogen-containing compounds, including heterocyclics. The liquid products of the DSS had the greater content of carbohydrates, esters, and unidentified compounds, which were probably condensed compounds.


Sewage sludge Pyrolysis Thermal decomposition Fresh sewage sludge Deposited sewage sludge Liquid products 



The work was partly performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. It was partially supported by a joint grant from the Russian Foundation for Basic Research and the Tatarstan Republic (Project No. 15-44-02606).


  1. 1.
    Alvarez, J., Amutio, M., Lopez, G., Barbarias, I., Bilbao, J., Olazar, M.: Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chem. Eng. J. 273, 173–183 (2015)CrossRefGoogle Scholar
  2. 2.
    Bottril, P.: Minimizing the sludge disposal problem. Water Waste Treat. 9, 26 (1997)Google Scholar
  3. 3.
    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 38, 68–94 (2012)CrossRefGoogle Scholar
  4. 4.
    Burns, H., Gremminger, L.: Lime and fly ash stabilization of waste water treatment sludge. Pat. 5277826 (USA). Priority 01.11.1991. Published 11.01.1994 (1994)Google Scholar
  5. 5.
    Chertes, K., Strelkov, A., Bykov, D.: Utilizatsiia osadkov stochnykh vod v kachestve materiala dlia TBO (Utilization of sewage sludge as a material for MSW isolation). Vodoshabzheniie i sanitarnaia tekhnika. 6, 36–39 (2001)Google Scholar
  6. 6.
    Conesa, J.A., Marcilla, A., Prats, D., Rodriguez-Pastor, M.: Kinetic study of the pyrolysis of sewage sludge. Waste Manage. Res. 15, 293–305 (1997)CrossRefGoogle Scholar
  7. 7.
    Czerska, A., Smith, S.R.: Effects of air-drying and storing sewage sludge biosolids on enteric pathogens, indicators and nutrients. Centre for Environmental Control and Waste Management Department of Civil and Environmental Engineering (2008).
  8. 8.
    Elkasabia, Y., Mullena, C.S., Jackson, M.A., Boateng, A.A.: Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications. J. Anal. Appl. Pyrol. 114, 179–186 (2010)CrossRefGoogle Scholar
  9. 9.
    Fang, W., Liu, J., Kosson, D.S., van der Sloot, H.A., Peng, Z.: Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost. Waste Manage. 58, 324–334 (2016)CrossRefGoogle Scholar
  10. 10.
    Fayzrakhmanova, G.M., Zabelkin, S.A., Grachev, A.N., Bashkirov, V.N.: A study of the properties of a composite asphalt binder using liquid products of wood fast pyrolysis. Polym. Sci. Ser. D 9(2), 181–184 (2016)CrossRefGoogle Scholar
  11. 11.
    Font, R., Fullana, A., Conesa, J.A., Llavador, F.: Analysis of the pyrolysis and combustion of different sewage sludges by TG. J. Anal. Appl. Pyrol. 58–59, 927–941 (2001)CrossRefGoogle Scholar
  12. 12.
    Fytili, D., Zabaniotou, A.: Utilization of sewage sludge in EU application of old and new methods—a review. Renew. Sustain. Energy Rev. 12(1), 116–140 (2008)CrossRefGoogle Scholar
  13. 13.
    Hernandez, A.B., Okonta, F., Freeman, N.: Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetic analysis. J. Environ. Manage. 196, 560–568 (2017)CrossRefGoogle Scholar
  14. 14.
    Hinger, K.-J.: Sludge utilization. Application 4020552 (Germany). Priority 28.06.1990. Published 02.01.1992 (1992)Google Scholar
  15. 15.
    Jayaraman, K., Gökalp, I.: Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers. Manage. 89, 83–91 (2015)CrossRefGoogle Scholar
  16. 16.
    Karayildirim, T., Yanik, J., Yuksel, M., Bockhorn, H.: Characterization of products from pyrolysis of waste sludges. Fuel. 85, 1498–1508 (2006)CrossRefGoogle Scholar
  17. 17.
    Kim, Y., Parker, W.: A technical and economic evaluation of pyrolysis of sewage sludge for the production of bio-oil. Bioresour. Technol. 99, 1409–1416 (2008)CrossRefGoogle Scholar
  18. 18.
    Kistler, R.C., Widmer, F., Brunner, P.H.: Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environ. Sci. Technol. 21, 704–708 (1987)CrossRefGoogle Scholar
  19. 19.
    Kuryntseva, P., Galitskaya, P., Selivanovskaya, S.: Changes in the ecological properties of organic wastes during their biological treatment. Waste Manage. 58, 90–97 (2016)CrossRefGoogle Scholar
  20. 20.
    Magdziarz, A., Werle, S.: Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manage. 34, 174–179 (2014)CrossRefGoogle Scholar
  21. 21.
    Nowicki, L., Ledakowicz, S.: Comprehensive characterization of thermal decomposition of sewage sludge by TG–MS. J. Anal. Appl. Pyrol. 110, 220–228 (2014)CrossRefGoogle Scholar
  22. 22.
    Shao, J., Yan, R., Chen, H., Wang, B., Lee, D.H., Liang, D.T.: Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis. Energy Fuels. 22, 38–45 (2008)CrossRefGoogle Scholar
  23. 23.
    Soria-Verdugo, A., Morato-Godino, A., Garcia-Gutierrez, L.M., Garcia-Hernando, N.: Pyrolysis of sewage sludge in a fixed and a bubbling fluidized bed—estimation and experimental validation of the pyrolysis time. Energy Convers. Manage. 144, 235–242 (2017)CrossRefGoogle Scholar
  24. 24.
    Stammbach, M.R., Kraaz, B., Hagenbucher, R., Richarz, W.: Pyrolysis of sewage sludge in a fluidized bed. Energy Fuels. 3, 255–259 (1989)CrossRefGoogle Scholar
  25. 25.
    Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., Xianga, J.: Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 80, 888–913 (2017)CrossRefGoogle Scholar
  26. 26.
    Urban, D.L., Antal, M.J.: Study of the kinetics of sewage sludge pyrolysis using DSC and TGA. Fuel. 61, 799–806 (1982)CrossRefGoogle Scholar
  27. 27.
    Varfolomeev, M.A., Emel’yanenko, V.N., Musin, T.R., Gerasimov, A.V., Nurgaliev, D.K., Grachev, A.N., Makarov, A.A., Zabelkin, S.A.: Thermal analysis and calorimetric study of the combustion of hydrolytic wood lignin and products of its pyrolysis. Chem. Technol. Fuels Oils. 51(1), 140–145 (2015)CrossRefGoogle Scholar
  28. 28.
    Werle, S., Wilk, R.K.: A review of methods for the thermal utilization of sewage sludge: the polish perspective. Renew. Energy. 35, 9, 1914–1919 (2010)CrossRefGoogle Scholar
  29. 29.
    Zabelkin, S., Grachev, A., Bashkirov, V.: Pererabotka drevesiny v zhydkoie toplivo i iego energeticheskoie ispol’zpvaniie (Wood processing in liquid fuel and its energy application). Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 24, 39–42 (2011)Google Scholar
  30. 30.
    Zabelkin, S., Grachev, A., Fayzrakhmanova, G., Makarov, A., Bashkirov, V.: Application of the water-insoluble pyrolysis oil fraction as an organic binder. Constr. Build. Mater. 102, 59–64 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Kazan National Research Technological UniversityKazanRussia
  2. 2.Kazan Federal UniversityKazanRussia

Personalised recommendations