Waste and Biomass Valorization

, Volume 10, Issue 4, pp 985–1002 | Cite as

Thermodynamic Quasi-Equilibrium Model for the Energetic Performances Analysis of the Air and Air–Steam Gasification of Raw and Pretreated Cotton Stalks by Torrefaction and Carbonization

  • Harouna Gado IbrahimEmail author
  • Oumar Sanogo
  • Tizane Daho
  • Salifou K. Ouiminga
  • Jean Koulidiati
Original Paper


Numerical and experimental study of the gasification of raw and pretreated (torrefied and carbonized) cotton stalks were investigated. The experimental results were used to calibrate the quasi-equilibrium model by multiplying the equilibrium reaction constant with coefficient varying from 0.01 to 10 and by fixing the methane molar fraction. Values varying from 0.15 to 0.7, 0 to 0.8 and 400 to 900 K were considered for air equivalence ratio (ER), the ratio of steam to fuel (SF) and the temperature of steam respectively. LHV and energy efficiency decreased from 4528 kJ Nm− 3 and 73.5% for the raw cotton stalks to 3984 kJ Nm− 3 and 68.9% for torrefied cotton stalks and to 3815 kJ Nm− 3 and 69.6% for carbonized cotton stalks. The energy efficiency was improved by steam injection to 80, 78 and 75% for the gasification of raw, torrefied and carbonized CS respectively due to the increase of H2 and CH4. The air–steam gasification was more efficient to air gasification at a temperature of steam over than 500 K for raw cotton stalks. However, only the air–steam gasification of pretreated cotton stalks was recommended since it has the net energy efficiency (which consider the steam energy) superior to 60%.


Equilibrium model Cotton stalks Pretreatment Energy efficiency Air–steam gasification 




Air to fuel ratio


Specific heat (kJ kg− 1K− 1)


Equivalence ratio

\(h{\left( T \right)_i}\)

Sensible enthalpy variation from \({T_0}\) to \(T\) (kJ mol− 1)


Sensible enthalpy of gas species (\(i\)) at temperature \(T\)


Enthalpy of formation (kJ mol− 1)


Reaction equilibrium constant


Lower heating value (MJ Nm− 3 or MJ kg− 1)


Water vaporisation enthalpy at 1 bar (40.644 kJ mol− 1)


Mass (kg)


Molar mass (g mol− 1)


Mole of the produced gas species \(i\) (mole)


Atmospheric pressure (1.013 bar)


Ideal gas constant (8.314 J mol− 1 K− 1)




Steam to fuel ratio


Gasification time (min)


Humidity content (%)


Ash content of the biomass (%)


Temperature (K)


Normal temperature (273.15 K)


Ambient temperature (K)


Gasification mean temperature (K)


Volume (m3)


Molar volume (m3 mol− 1)


Normal volume (Nm3)


Molar fraction of gas species \(i\)

\(\left[ i \right]\)

Mole fraction of the gas species \(i\) (mol mol− 1)


Mole of reactants (mole)


Energy efficiency (%)

\({\eta _{net}}\)

Net Energy efficiency (%)

\({\rho _{{N_2}}}\left( T \right)\)

Density of nitrogen at temperature \(T\) (kg m− 3)







Biomass type (Raw, torrefied or carbonized cotton stalks)




Gas species\(~i\), (CO, CO2, H2, CH4, N2)


Introduced species






Liquid water


  1. 1.
    Ouedraogo, I.M.: Electricity consumption and economic growth in Burkina Faso: A cointegration analysis. Energy Econ. 32, 524–531 (2010)CrossRefGoogle Scholar
  2. 2.
    Harouna, I.G., Oumar, S., Tizane, D., Salifou, K.O., Abouzeidi, D., Bernard, N., Jean, K.: Determination of processes suitable for cotton stalk carbonization and torrefaction by partial combustion using a metal kiln. Energy Sustain. Develop. 24, 50–57 (2015)CrossRefGoogle Scholar
  3. 3.
    Dudyński, M., Johan, C.V., Kwiatkowski, K., Sosnowska, M.: Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel Process. Technol. 131, 203–212 (2015)CrossRefGoogle Scholar
  4. 4.
    Prins, M.J., Ptasinski, K., Janssen, F.: From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy. 32, 1248–1259 (2007)CrossRefGoogle Scholar
  5. 5.
    Tapasvi, D., Rajesh, S.K., Khanh-Quang, T., Skreiberg, O., Gronli, M.: A simulation study on the torrefied biomass gasification. Energy Convers. Manage. 90, 446–457 (2015)CrossRefGoogle Scholar
  6. 6.
    Kuo, P.C., Wei, W., Chen, W.H.: Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel. 117, 1231–1241 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, W.H., Chen, C.J., Hung, C.I., Shen, C.H., Hsu, H.W.: A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor. Appl. Energy. 112, 421–430 (2013)CrossRefGoogle Scholar
  8. 8.
    Weiland, F., Martin, N., Olofsson, I., Wiinikka, H., Nordin, A.: Entrained flow gasification of torrefied wood residues. Fuel Process. Technol. 125, 51–58 (2014)CrossRefGoogle Scholar
  9. 9.
    Sarkar, M., Kumar, A., Shankar, J.T., Krushna, N.P., Danielle, D.B.: Gasification performance of switchgrass pretreated with torrefaction and densification. Appl. Energy. 127, 194–201 (2014)CrossRefGoogle Scholar
  10. 10.
    Vaezi, M., Passandideh-Fard, M., Moghiman, M., Charmchi, M.: On a methodology for selecting biomass materials for gasification purposes. Fuel Process. Technol. 98, 74–81 (2012)CrossRefGoogle Scholar
  11. 11.
    Maria, P.A., Joan, C.B., Alberto, C.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14, 2841–2851 (2010)CrossRefGoogle Scholar
  12. 12.
    Sharma, A.K.: Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Convers. Manage. 49, 832–842 (2008)CrossRefGoogle Scholar
  13. 13.
    Loha, C., Pradip, K.C., Himadri, C.: Performance of fluidized bed steam gasification of biomass—Modeling and experiment. Energy Convers. Manage. 52, 1583–1588 (2011)CrossRefGoogle Scholar
  14. 14.
    Young-il, L., Lee, U.D.: Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds. Fuel Process. Technol. 128, 199–210 (2014)CrossRefGoogle Scholar
  15. 15.
    Barman, N.S., Ghosh, S., Sudipta, D.: Gasification of biomass in a fixed bed downdraft gasifier—A realistic model including tar. Bioresour. Technol. 107, 505–511 (2012)CrossRefGoogle Scholar
  16. 16.
    Chase, M.W., Curnutt, J.L., Downey, J.R., McDonald, R.A., Syverud, A.N., Valenzuela, E.A.: JANAF thermochemic tables supplement. J. Phys. Chem. Ref. Data. 11(3), 695–940 (1982)Google Scholar
  17. 17.
    Roy, P.C., Datta, A., Chakraborty, N.: Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier. Renew. Energy. 35, 379–386 (2010)CrossRefGoogle Scholar
  18. 18.
    Ragland, K.W., Aerts, D.J., Baker, A.J.: Properties of Wood for Combustion Analysis. Bioresour. Technol. 37, 161–168 (1991)CrossRefGoogle Scholar
  19. 19.
    Jarungthammachote, S., Dutta, A.: Thermodynamic equilibrium model and second law analysis of a downdraft gasifier. Energy. 32, 1660–1669 (2007)CrossRefGoogle Scholar
  20. 20.
    Cerone, N., Zimbardi, F., Villone, A., Strjiugas, N., Kiyikci, E.G.: Gasification of wood and torrefied wood with air, oxygen, and steam in a fixed-bed pilot plant. Energy Fuels. 30, 4034–4043 (2016)CrossRefGoogle Scholar
  21. 21.
    Abdul Salam, P., Bhattacharya, S.C.: A comparative study of charcoal gasification in two types of spouted bed reactors. Energy. 31, 228–243 (2006)CrossRefGoogle Scholar
  22. 22.
    Deydier, A., Marias, F., Bernada, P., Couture, F., Michon, U.: Equilibrium model for a travelling bed gasifier. Biomass Bioenergy. 35, 133–145 (2011)CrossRefGoogle Scholar
  23. 23.
    Probstein, R.F., Hicks, R.E.: Synthetic Fuels. Dover Publications, New York, pp. 63, 98–99 (2006)Google Scholar
  24. 24.
    Karatas, H., Olgun, H., Akgun, F.: Experimental results of gasification of cotton stalk and hazelnut shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel. 112, 494–501 (2013)CrossRefGoogle Scholar
  25. 25.
    He, P.W., Luo, S.Y., Cheng, G., Xiao, B., Cai, L., Wang, J.B.: Gasification of biomass char with air-steam in a cyclone furnace. Renew. Energy. 37, 398–402 (2012)CrossRefGoogle Scholar
  26. 26.
    Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y., Zhu, J.X.: An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour. Technol. 95, 95–101 (2004)CrossRefGoogle Scholar
  27. 27.
    Campoy, M., Gómez-Barea, A., Vidal, F.B., Ollero, P.: Air–steam gasification of biomass in a fluidised bed: Process optimisation by enriched air. Fuel Process. Technol. 90, 677–685 (2009)CrossRefGoogle Scholar
  28. 28.
    Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., Santos, J.: Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel. 180, 407–416 (2016)CrossRefGoogle Scholar
  29. 29.
    Ngamchompoo, W., Triratanasirichai, K.: Quality enhancement of producer gas from cassava rhizome using high temperature air-steam downdraft gasification. Am. J. Appl. Sci. 10, 395–402 (2013)CrossRefGoogle Scholar
  30. 30.
    Gerardo, G.A.: Fixed bed countercurrent low temperature gasification of dairy biomass and coal-dairy biomass blends using air-steam as oxidizer. PhD Thesis, Texas A&M University (2009)Google Scholar
  31. 31.
    Sharma, S., Sheth, P.N.: Air–steam biomass gasification: Experiments, modeling and simulation. Energy Convers. Manage. 110, 307–318 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Harouna Gado Ibrahim
    • 1
    Email author
  • Oumar Sanogo
    • 2
  • Tizane Daho
    • 3
  • Salifou K. Ouiminga
    • 3
  • Jean Koulidiati
    • 3
  1. 1.Université Dan Dicko Dankoulodo de MaradiMaradiNiger
  2. 2.IRSAT, Institut de Recherche en Sciences Appliquées et TechnologiesOuagadougouBurkina Faso
  3. 3.LPCE, Département de PhysiqueUniversité Joseph Ki-Zerbo de OugadougouOuagadougouBurkina Faso

Personalised recommendations