Waste and Biomass Valorization

, Volume 10, Issue 4, pp 1037–1042 | Cite as

Specificity of Mo and V Removal from a Spent Catalyst by Cupriavidus metallidurans CH34

  • A. M. Rivas-Castillo
  • T. L. Monges-Rojas
  • N. G. Rojas-AvelizapaEmail author
Original Paper


Spent catalysts are classified as hazardous residues of major environmental concern, mainly due to its elevated metal content. Although conventional spent catalysts treatment methods are available, they generate harmful wastes. Thus, biotechnological approaches are currently being explored to overcome the negative impacts generated by traditional treatment technologies. The present work studied the ability of Cupriavidus metallidurans CH34 to remove heavy metals contained in a spent catalyst that came from an oil refining process. To this end, C. metallidurans resistance to a spent catalyst at 1% (w/w) of pulp density was evaluated, as well as its ability for the removal of the metals contained therein. The results showed that the strain was able to remove 931.56 ± 95.38 mg/kg, and 2111 ± 251.81 of Mo and V, respectively. Considering the elevated toxic nature of spent catalysts, is imminent to develop alternative methods to treat this kind of residues in order to diminish their high metal content. Hence, the data presented here exhibit the first insights into C. metallidurans ability for Mo and V removal from a spent catalyst, and explores for the first time C. metallidurans potential to be used on spent catalysts biotreatment processes.


Cupriavidus metallidurans CH34 Biotreatment Spent catalyst Metal resistance Metal removal 



This project was supported by Grant No. 131203 from Consejo Nacional de Ciencia y Tecnología, Mexico.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Van Santen, R.: Catalysis in perspective: historic review. Wiley-VCH, Weinheim (2012)Google Scholar
  2. 2.
    Furimsky, E.: Catalysts for upgrading heavy petroleum feeds studies in surface science and catalysis. Elsevier, Amsterdam (2007)Google Scholar
  3. 3.
    Marafi, M., Rana, M.S.: Refinery waste: the spent hydroprocessing catalyst and its recycling options. In: 8th international conference on waste management and the environment (proceedings). pp. 219–230. Valencia, Spain (2016)Google Scholar
  4. 4.
    Marafi, M., Stanislaus, A.: Studies on recycling and utilization of spent catalysts: preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts. Appl. Catal. B. 71, 199–206 (2007)CrossRefGoogle Scholar
  5. 5.
    Eijsbouts, S., Battiston, A.A., van Leerdam, G.C.: Life cycle of hydroprocessing catalysts and total catalyst management. Catal. Today. 130, 361–373 (2008)CrossRefGoogle Scholar
  6. 6.
    Marafi, M., Rana, M.S.: Refinery waste: the spent hydroprocessing catalyst and its recycling options. In: WIT transactions on ecology and the environment (proceedings). pp. 219–230. Valencia, Spain (2016)Google Scholar
  7. 7.
    Marafi, M., Stanislaus, A.: Spent hydroprocessing catalyst management: a review. Resour. Conserv. Recycl. 53, 1–26 (2008)CrossRefGoogle Scholar
  8. 8.
    Marafi, M., Stanislaus, A.: Spent catalyst waste management: a review: part I—developments in hydroprocessing catalyst waste reduction and use. Resour. Conserv. Recycl. 52, 859–873 (2008)CrossRefGoogle Scholar
  9. 9.
    Marafi, M., Stanislaus, A.: Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts. Catal. Today. 130, 421–428 (2008)CrossRefGoogle Scholar
  10. 10.
    Al-Sheeha, H., Marafi, M., Raghavan, V., Rana, M.S.: Recycling and recovery routes for spent hydroprocessing catalyst waste. Ind. Eng. Chem. Res. 52, 12794–12801 (2013)CrossRefGoogle Scholar
  11. 11.
    Akcil, A., Vegliò, F., Ferella, F., Okudan, M.D., Tuncuk, A.: A review of metal recovery from spent petroleum catalysts and ash. Waste Manage. (Oxford). 45, 420–433 (2015)CrossRefGoogle Scholar
  12. 12.
    Gadd, G.M.: Microbial influence on metal mobility and application for bioremediation. Geoderma 122, 109–119 (2004)CrossRefGoogle Scholar
  13. 13.
    Gadd, G.M.: Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010)CrossRefGoogle Scholar
  14. 14.
    Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J., Charles, P., Van Gijsegem, F.: Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162, 328–334 (1985)Google Scholar
  15. 15.
    Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Dunn, J., Van Der Lelie, D., Wattiez, R.: Ralstonia metallidurans, a bacterium specially adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27, 385–410 (2003)CrossRefGoogle Scholar
  16. 16.
    Nies, D.H., Silver, S.: Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol. 14, 186–199 (1995)CrossRefGoogle Scholar
  17. 17.
    Nies, D.H.: Mini-review: microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730–750 (1999)CrossRefGoogle Scholar
  18. 18.
    Nies, D.H.: Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313–339 (2003)CrossRefGoogle Scholar
  19. 19.
    Nies, D.H.: The biological chemistry of the transition metal ‘‘transportome’’ of Cupriavidus metallidurans. Metallomics. 8, 481–507 (2016)CrossRefGoogle Scholar
  20. 20.
    Diels, L., De Smet, M., Hooyberghs, L., Corbisier, P.: Heavy metals bioremediation of soil. Mol. Biotechnol. 12, 149–158 (1999)CrossRefGoogle Scholar
  21. 21.
    Guiné, V., Martins, J.M.F., Causse, B., Durand, A., Gaudet, J.-P., Spadini, L.: Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc. Chem. Geol. 236, 266–280 (2007)CrossRefGoogle Scholar
  22. 22.
    Ledrich, M.-L., Stemmler, S., Laval-Gilly, P., Foucaud, L., Falla, J.: Precipitation of silver-thiosulfate complex and immobilization of silver by Cupriavidus metallidurans CH34. BioMetals 18, 643–650 (2005)CrossRefGoogle Scholar
  23. 23.
    Sarret, G., Avoscan, L., Carrière, M., Collins, R., Geoffroy, N., Carrot, F., Covès, J., Gouget, B.: Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl. Environ. Microbiol. 71, 2331–2337 (2005)CrossRefGoogle Scholar
  24. 24.
    Reith, F., Rogers, S.L., McPhail, D.C., Webb, D.: Biomineralization of gold: biofilms on bacterioform gold, vol. 313, pp. 233–236. Science, New York (2006)Google Scholar
  25. 25.
    Hajdu, R., Pinheiro, J.P., Galceran, J., Slaveykova, V.I.: Modeling of Cd uptake and efflux kinetics in metal-resistant bacterium Cupriavidus metallidurans. Environ. Sci. Technol. 44, 4597–4602 (2010)CrossRefGoogle Scholar
  26. 26.
    Monsieurs, P., Moors, H., Van Houdt, R., Janssen, P.J., Janssen, A., Coninx, I., Mergeay, M., Leys, N.: Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24, 1133–1151 (2011)CrossRefGoogle Scholar
  27. 27.
    Grosse, C., Herzberg, M., Schüttau, M., Wiesemann, N., Hause, G., Nies, D.H.: Characterization of the ∆7 mutant of Cupriavidus metallidurans with deletions of seven secondary metal uptake systems. Mol. Biol. Physiol. 1, e00004–e00016 (2016)Google Scholar
  28. 28.
    Gómez-Ramírez, M., García-Martínez, L., Fierros-Romero, G., Rojas-Avelizapa, N.G.: Evaluation and identification of microorganisms able to remove Ni and V from spent catalyst. In: Biohidrometallurgy, Vol. 14, pp. 2–26. Falmouth, Cornwall (2014)Google Scholar
  29. 29.
    Gómez-Ramírez, M., Montero-Álvarez, L.A., Tobón-Avilés, A., Fierros-Romero, G., Rojas-Avelizapa, N.G.: Microbacterium oxydans and Microbacterium liquefaciens: A biological alternative for the treatment of Ni-V-containing wastes. J. Environ. Sci. Health A 50, 602–610 (2015)Google Scholar
  30. 30.
    Nicholson, W.L., Setlow, P.: Sporulation, germination and outgrowth. In: Harwood, C.R., Cutting, S.M. (eds.) Molecular biological methods for Bacillus. pp. 391–450. Wiley, Chichester (1990)Google Scholar
  31. 31.
    Fan, J., Okyay, Onal, Frigi Rodrigues, T.: D.: The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates. J. Hazard. Mat. 279, 236–243 (2014)CrossRefGoogle Scholar
  32. 32.
    Kirsten, A., Herzberg, M., Voigt, A., Seravalli, J., Grass, G., Scherer, J., Nies, D.H.: Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34. J. Bacteriol. 193, 4652–4663 (2011)CrossRefGoogle Scholar
  33. 33.
    Grosse, C., Friedrich, S., Nies, D.H.: Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J. Mol. Microbiol. Biotechnol. 12, 227–240 (2007)CrossRefGoogle Scholar
  34. 34.
    Waldron, K.J., Robinson, N.J.: How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35 (2009)CrossRefGoogle Scholar
  35. 35.
    Solioz, M., Mermod, M., Abicht, H.K., Mancini, S.: Responses of lactic acid bacteria to heavy metal stress. In: Stress responses of lactic acid bacteria, pp. 163–195. Springer, Boston (2011)CrossRefGoogle Scholar
  36. 36.
    Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J.: Heavy metal toxicity and the environment. EXS. 101, 133–164 (2012)Google Scholar
  37. 37.
    Hassan, H.M.: Microbial superoxide dismutases. Adv. Genet. 26, 65–97 (1989)CrossRefGoogle Scholar
  38. 38.
    Guiné, V., Martins, J., Gaudet, J.P.: Facilitated transport of heavy metals by bacterial colloids in sand 219 columns. J. Phys. IV (Proceedings). 107, 593–596 (2003)CrossRefGoogle Scholar
  39. 39.
    Frausto da Silva, J.J.R.F., Williams, R.J.P.: The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, Oxford (2001)Google Scholar
  40. 40.
    Motaghed, M., Mousavi, S.M., Rastegar, S.O., Shojaosadati, S.A.: Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization. Bioresour. Technol. 171, 401–409 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPNQuerétaroMexico

Personalised recommendations