Waste and Biomass Valorization

, Volume 10, Issue 4, pp 1003–1011 | Cite as

Application of Plackett–Burman Design in Screening the Significant Parameters in Extraction of Phytic Acid from Defatted Rice Bran by Acetic Acid

  • Ruyi ShaEmail author
  • Dongyang Wu
  • Wenxing Wang
  • Shaolin Wang
  • Chenggang Cai
  • Jianwei MaoEmail author
Original Paper


This study aimed to screen the effective parameters that influence the extraction of phytic acid from defatted rice bran. Phytic acid was extracted from defatted rice bran with the help of food-grade acetic acid. The extraction parameters were screened in accordance with the Plackett–Burman design methodology to investigate their effects on the yield of phytic acid. A mathematical model of the yield of phytic acid was developed according to the statistical results of different parameters. This paper studied the main effects and the ratio of liquid to solid (L/S ratio), and at the same time pH and temperature were found to be the significant parameters on the yield of phytic acid. With the optimized parameters from the established mathematical model, this paper carried out a validation of the model.


Phytic acid Defatted rice bran Optimization Plackett–Burman design 



This work was supported by grants from the Zhejiang Provincial Key Research and Development Program (Grant No. 2015C02031), the China Spark Program (Grant No. 2015GA700079), the Opening Fund of Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing (Grant Nos. 2016KF0107), Xinmiao talents Project of Zhejiang Province (2017R415020), and the Science Foundation of Tongxiang (Grant No. 201402037).


  1. 1.
    Sugano, M., Yuze, M., Komatsu, A., Enomoto, T., Kakuta, Y., Hirano, K.: Extraction of valuable compounds from hydrothermally reacted rice bran and wheat bran. Waste Biomass Valorization. 3(4), 381–393 (2012). doi: 10.1007/s12649-012-9117-7 CrossRefGoogle Scholar
  2. 2.
    Park, H. Y., Lee, K. W., Choi, H. D.: Rice bran constituents: immunomodulatory and therapeutic activities. Food Funct. (2017) doi: 10.1039/C6FO01763K Google Scholar
  3. 3.
    Silva, E. O., Bracarense, A. P.: Phytic acid: from antinutritional to multiple protection factor of organic systems. J. Food Sci. 81(6), R1357 (2016). doi: 10.1111/1750-3841.13320 CrossRefGoogle Scholar
  4. 4.
    Kapral, M., Wawszczyk, J., Jurzak, M., Hollek, A., Węglarz, L.: The effect of inositol hexaphosphate on the expression of selected metalloproteinases and their tissue inhibitors in IL-1β-stimulated colon cancer cells. Int. J. Colorectal Dis. 27(11), 1419–1428 (2012). doi: 10.1007/s00384-012-1445-3 CrossRefGoogle Scholar
  5. 5.
    Schröterová, L., Hasková, P., Rudolf, E., Cervinka, M.: Effect of phytic acid and inositol on the proliferation and apoptosis of cells derived from colorectal carcinoma. Oncol. Rep. 23(3), 787 (2010). doi: 10.3892/or_00000699 Google Scholar
  6. 6.
    Bhowmik, A., Ojha, D., Goswami, D., Das, R., Chandra, N. S., Chatterjee, T. K., Chakravarty, A., Chakravarty, S., Chattopadhyay, D.: Inositol hexa phosphoric acid (phytic acid), a nutraceuticals, attenuates iron-induced oxidative stress and alleviates liver injury in iron overloaded mice. Biomed. Pharmacother. (2017). doi: 10.1016/j.biopha.2016.12.125 Google Scholar
  7. 7.
    Soravia, S., Orth, A.: Design of experiments. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH, Weinheim (2009)Google Scholar
  8. 8.
    Kenari, H. S., Alinejad, Z., Imani, M., Nodehi, A.: Effective parameters in determining cross-linked dextran microsphere characteristics: screening by Plackett-Burman design-of-experiments. J. Microencapsul. 30(6), 599 (2013). doi: 10.3109/02652048.2013.770096 CrossRefGoogle Scholar
  9. 9.
    Murray, J. Jr.: X-Stat: statistical experiment design/data analysis/nonlinear optimization. John Wiley and Sons, Inc, New York (1984)Google Scholar
  10. 10.
    Aguedo, M., Fougnies, C., Dermience, M., Richel, A.: Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydr. Polym. 105(5), 317–324 (2014). doi: 10.1016/j.carbpol.2014.01.096 CrossRefGoogle Scholar
  11. 11.
    Keskin, G. T., Deniz, I., Calışkan, G., Sahin, E. S., Azbar, N.: Experimental design methods for bioengineering applications. Crit. Rev. Biotechnol. 36(2), 1–21 (2016). doi: 10.3109/07388551.2014.973014 Google Scholar
  12. 12.
    Zhang, H. W., Bai, X. L.: Optimization of extraction conditions for phytic acid from rice bran using response surface methodology and its antioxidant effects. J. Food Sci. Technol. 51(2), 371–376 (2014). doi: 10.1007/s13197-011-0521-y CrossRefGoogle Scholar
  13. 13.
    Kolchev, L. A.: Method for producing phytin. US: 1978Google Scholar
  14. 14.
    Makower, R. U.: Extraction and determination of phytic acid in beans (Phaseolus vulgaris). Cereal Chem. 47(3), 288 (1970). doi: 10.1007/s11101-012-9233-9 Google Scholar
  15. 15.
    Han, Y. W.: Removal of phytic acid from soybean and cottonseed meals. J. Agric. Food Chem. 36(6), 1181–1183 (1988). doi: 10.1021/jf00084a014 CrossRefGoogle Scholar
  16. 16.
    Park, H. R., Ahn, H. J., Kim, S. H., Lee, C. H., Byun, M. W., Lee, G. W.: Determination of the phytic acid levels in infant foods using different analytical methods. Food Control. 17(9), 727–732 (2006). doi: 10.1016/j.foodcont.2005.05.007 CrossRefGoogle Scholar
  17. 17.
    Kang, H., Zhou, X., Dong, L., Feng, T.: Synergetic extraction of phytic acid from HCl extract of rapeseed meal with alamine 336 and n-octanol dissolved in sulfonated kerosene. Ind. Eng. Chem. Res. 50(14), 8658–8664 (2011). doi: 10.1021/ie200080g CrossRefGoogle Scholar
  18. 18.
    Saad, N., Esa, N. M., Ithnin, H., Shafie, N. H.: Optimization of optimum condition for phytic acid extraction from rice bran. Afr. J. Plant Sci. 5(3), 168–176 (2011)Google Scholar
  19. 19.
    Uppström, B., Svensson, R.: Determination of phytic acid in rapeseed meal. J. Sci. Food Agric. 31(7), 651–656 (1980). doi: 10.1002/jsfa.2740310706 CrossRefGoogle Scholar
  20. 20.
    Ravindran, V., Ravindran, G., Sivalogan, S.: Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem. 50(2), 133–136 (1994). doi: 10.1016/0308-8146(94)90109-0 CrossRefGoogle Scholar
  21. 21.
    Daumer, M.-L., Béline, F., Spérandio, M., Morel, C.: Relevance of a perchloric acid extraction scheme to determine mineral and organic phosphorus in swine slurry. Bioresour. Technol. 99(5), 1319–1324 (2008). doi: 10.1016/j.biortech.2007.02.040 CrossRefGoogle Scholar
  22. 22.
    Xu, P., Price, J., Aggett, P. J.: Recent advances in methodology for analysis of phytate and inositol phosphates in foods. Prog. Food Nutr. Sci. 16(3), 245 (1992)Google Scholar
  23. 23.
    Hunter, I., Samaranayake, L., Robertson, A., Macfarlane, T., Ferguson, M.: The effect of chlorhexidine gluconate and benzydamine hydrochloride mouthwashes on irradiation-induced oral mucositis. J. Dent. Res. 66(4), 871–871 (1987)Google Scholar
  24. 24.
    Latta, M., Eskin, M.: A simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 28(6), 1313–1315 (1980). doi: 10.1007/s00240-012-0473-3 CrossRefGoogle Scholar
  25. 25.
    Frühbeck, G., Alonso, R., Marzo, F., Santidrián, S.: A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal. Biochem. 225(2), 206–212 (1995). doi: 10.1006/abio.1995.1145 CrossRefGoogle Scholar
  26. 26.
    Bohn, L., Josefsen, L., Meyer, A. S., Rasmussen, S. K.: Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. J. Agric. Food Chem. 55(18), 7547 (2007). doi: 10.1021/jf071191t CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
  2. 2.Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm ProductsHangzhouChina
  3. 3.Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical ManufacturingHangzhouChina
  4. 4.Tongxiang Xinyang Food Additives CO., LTDTongxiangChina

Personalised recommendations