Waste and Biomass Valorization

, Volume 10, Issue 3, pp 609–615 | Cite as

Synergistic Effect of Sulfide and Ammonia on Anaerobic Digestion of Chicken Manure

  • Recep Önder SürmeliEmail author
  • Alper Bayrakdar
  • Rahim Molaey
  • Bariş Çalli
Original Paper


The effect of the sulfur load on anaerobic digestion of chicken manure (CM) was investigated in a laboratory scale anaerobic mono-digester at high total ammonia nitrogen (TAN) concentrations. The digester was operated for 268 days by increasing the organic loading rate from 0.5 to 2.5 kg-VS/m3/day and the total Kjeldahl nitrogen up to 5050 mg/l. The CH4 yield of 0.36 ± 0.02 m3/kg-VS was achieved at 2.5 kg-VS/m3/day of loading rate without any inhibition. The results showed that, anaerobic mono-digestion of chicken manure was applicable with the acclimation of microbial consortium to high TAN concentrations. However, when the sulfur content of the CM fed to the digester increased suddenly by coincidence, the CH4 yield decreased about 25% from 0.36 ± 0.02 to 0.27 ± 0.03 m3/kg-VS. As a result, the acetic acid concentration increased from 130 to 1700 mg/l showing that the acetate consuming methanogens were detrimentally affected from TAN and total sulfide concentrations above 4000 and 100 mg/l, respectively.


Ammonia Anaerobic digestion Chicken manure Inhibition Total sulfide Sulfur 



Scientific and Technological Research Council of Turkey (TÜBİTAK) financially supported this study [Project Number: 113Y333].


  1. 1.
    Huang, W., Zhao, Z., Yuan, T., Lei, Z., Cai, W., Li, H., Zhang, Z.: Effective ammonia recovery from swine excreta through dry anaerobic digestion followed by ammonia stripping at high total solids content. Biomass Bioenergy. 90, 139–147 (2016). doi: 10.1016/j.biombioe.2016.04.003 CrossRefGoogle Scholar
  2. 2.
    Sun, C., Cao, W., Banks, C.J., Heaven, S., Liu, R.: Biogas production from undiluted chicken manure and maize silage: a study of ammonia inhibition in high solids anaerobic digestion. Bioresour. Technol. 218, 1215–1223 (2016). doi: 10.1016/j.biortech.2016.07.082 CrossRefGoogle Scholar
  3. 3.
    Stutzenstein, P., Bacher, M., Rosenau, T., Pfeifer, C.: Optimization of nutrient and carbon recovery from anaerobic digestate via hydrothermal carbonization and investigation of the influence of the process parameters. Waste Biomass Valorization (2017). doi: 10.1007/s12649-017-9902-4 Google Scholar
  4. 4.
    Yuan, H., Zhu, N.: Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renew. Sustain. Energy Rev. 58, 429–438 (2016). doi: 10.1016/j.rser.2015.12.261 CrossRefGoogle Scholar
  5. 5.
    Neerackal, G.M., Ndegwa, P.M., Joo, H.S., Wang, X., Harrison, J.H., Heber, A.J., Ni, J.Q., Frear, C.: Effects of anaerobic digestion and solids separation on ammonia emissions from stored and land applied dairy manure. Water Air Soil Pollut. 226(9) (2015). doi: 10.1007/s11270-015-2561-9
  6. 6.
    Cerrillo, M., Vinas, M., Bonmati, A.: Removal of volatile fatty acids and ammonia recovery from instable anaerobic digesters with a microbial electrolysis cell. Bioresour. Technol. (2016). doi: 10.1016/j.biortech.2016.07.103 Google Scholar
  7. 7.
    Bujoczek, G., Oleszkiewicz, J., Sparling, R., Cenkowski, S.: High solid anaerobic digestion of chicken manure. J. Agric. Eng. Res. 76(1), 51–60 (2000). doi: 10.1006/jaer.2000.0529 CrossRefGoogle Scholar
  8. 8.
    Abouelenien, F., Namba, Y., Kosseva, M.R., Nishio, N., Nakashimada, Y.: Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresour. Technol. 159, 80–87 (2014). doi: 10.1016/j.biortech.2014.02.050 CrossRefGoogle Scholar
  9. 9.
    Sürmeli, R.O., Bayrakdar, A., Çalli, B.: Removal and recovery of ammonia from chicken manure. Water Sci. Technol. wst2017116 (2017). doi: 10.2166/wst.2017.116
  10. 10.
    Nie, H., Jacobi, H.F., Strach, K., Xu, C., Zhou, H., Liebetrau, J.: Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate. Bioresour. Technol. 178, 238–246 (2015). doi: 10.1016/j.biortech.2014.09.029 CrossRefGoogle Scholar
  11. 11.
    Niu, Q., Qiao, W., Qiang, H., Hojo, T., Li, Y.Y.: Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: stability, inhibition and recovery. Bioresour. Technol. 137, 358–367 (2013). doi: 10.1016/j.biortech.2013.03.080 CrossRefGoogle Scholar
  12. 12.
    Sinkiewicz, I., Śliwińska, A., Staroszczyk, H., Kołodziejska, I.: Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valorization. 8(4), 1043–1048 (2016). doi: 10.1007/s12649-016-9678-y CrossRefGoogle Scholar
  13. 13.
    Bragulla, H.H., Homberger, D.G.: Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 214(4), 516–559 (2009). doi: 10.1111/j.1469-7580.2009.01066.x CrossRefGoogle Scholar
  14. 14.
    Thyagarajan, D., Barathi, M., Sakthivadivu, R.: Scope of poultry waste utilization. IOSR J. Agric. Vet. Sci. (IOSR-JAVS). 6(5), 29–35 (2013). doi: 10.9790/2380-0653644 CrossRefGoogle Scholar
  15. 15.
    Bunchasak, C.: Role of dietary methionine in poultry production. J. Poult. Sci. 46(3), 169–179 (2009)CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99(10), 4044–4064 (2008). doi: 10.1016/j.biortech.2007.01.057 CrossRefGoogle Scholar
  17. 17.
    Paulo, L.M., Stams, A.J.M., Sousa, D.Z.: Methanogens, sulphate and heavy metals: a complex system. Rev. Environ. Sci. Bio/Technol. 14(4), 537–553 (2015). doi: 10.1007/s11157-015-9387-1 CrossRefGoogle Scholar
  18. 18.
    Speece, R.E.: Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17(9), 416A-427A (1983)CrossRefGoogle Scholar
  19. 19.
    Clanton, C.J., Schmidt, D.R.: Sulfur compounds in gases emitted from stored manure. Trans. ASAE. 43(5), 1229–1239 (2000)CrossRefGoogle Scholar
  20. 20.
    Boyd, C.E.: Water quality: an introduction. Springer, New York (2015)CrossRefGoogle Scholar
  21. 21.
    Parkin, G.F., Lynch, N.A., Kuo, W.-C., Van Keuren, E.L., Bhattacharya, S.K.: Interaction between sulfate reducers and methanogens fed acetate and propionate. Res. J. Water Pollut. Control Fed. 780–788 (1990)Google Scholar
  22. 22.
    Gerardi, M.H.: The microbiology of anaerobic digesters. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  23. 23.
    McCartney, D.M., Oleszkiewicz, J.A.: Competition between methanogens and sulfate reducers: effect of COD:sulfate ratio and acclimation. Water Environ. Res. 65(5), 655–664 (1993). doi: 10.2175/wer.65.5.8 CrossRefGoogle Scholar
  24. 24.
    Jankowski, J., Kubińska, M., Zduńczyk, Z.: Nutritional and immunomodulatory function of methionine in poultry diets—a review. Ann. Anim. Sci. 14(1), (2014). doi: 10.2478/aoas-2013-0081
  25. 25.
    Meng, G.H., Song, D., Li, L.B., Yang, C.J., Qu, Z.X., Gao, Y.P.: Dietary methionine requirement of Jing Brown layer hens from 9 to 17 weeks of age. J. Anim. Physiol. Anim. Nutr. (Berl) (2016). doi: 10.1111/jpn.12525 Google Scholar
  26. 26.
    Zhan, X.A., Li, J.X., Xu, Z.R., Zhao, R.Q.: Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Br. Poult. Sci. 47(5), 576–580 (2006). doi: 10.1080/00071660600963438 CrossRefGoogle Scholar
  27. 27.
    Federation, W.E., Association, A.P.H.: Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC (2005)Google Scholar
  28. 28.
    Bayrakdar, A., Molaey, R., Sürmeli, R.Ö., Sahinkaya, E., Çalli, B.: Biogas production from chicken manure: co-digestion with spent poppy straw. Int. Biodeterior. Biodegrad. 119, 205–210 (2017). doi: 10.1016/j.ibiod.2016.10.058 CrossRefGoogle Scholar
  29. 29.
    Calli, B., Mertoglu, B., Inanc, B., Yenigun, O.: Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem. 40(3–4), 1285–1292 (2005). doi: 10.1016/j.procbio.2004.05.008 CrossRefGoogle Scholar
  30. 30.
    Bayrakdar, A., Tilahun, E., Calli, B.: Biogas desulfurization using autotrophic denitrification process. Appl. Microbiol. Biotechnol. 100(2), 939–948 (2016)CrossRefGoogle Scholar
  31. 31.
    Koster, I.W.: Toxicity in anaerobic digestion with emphasis on the effect of ammonia, sulfide and long-chain fatty acids on methanogenesis. Koster (1989)Google Scholar
  32. 32.
    Zeeman, G.: Mesophylic and psychrophilic digestion of liquid manure. Zeeman (1991)Google Scholar
  33. 33.
    Quiroga, G., Castrillon, L., Fernandez-Nava, Y., Maranon, E.: Physico-chemical analysis and calorific values of poultry manure. Waste Manag. 30(5), 880–884 (2010). doi: 10.1016/j.wasman.2009.12.016 CrossRefGoogle Scholar
  34. 34.
    Wu, S., Ni, P., Li, J., Sun, H., Wang, Y., Luo, H., Dach, J., Dong, R.: Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: dynamics of ammonium accumulation and mitigation control. Bioresour. Technol. 205, 75–81 (2016). doi: 10.1016/j.biortech.2016.01.021 CrossRefGoogle Scholar
  35. 35.
    Hansen, K.H., Angelidaki, I., Ahring, B.K.: Improving thermophilic anaerobic digestion of swine manure. Water Res. 33(8), 1805–1810 (1999)CrossRefGoogle Scholar
  36. 36.
    Zhou, X., Chen, C., Wang, A., Liu, L.H., Ho, K.L., Ren, N., Lee, D.J.: Rapid acclimation of methanogenic granular sludge into denitrifying sulfide removal granules. Bioresour. Technol. 102(8), 5244–5247 (2011). doi: 10.1016/j.biortech.2011.01.049 CrossRefGoogle Scholar
  37. 37.
    van Hullebusch, E.D., Guibaud, G., Simon, S., Lenz, M., Yekta, S.S., Fermoso, F.G., Jain, R., Duester, L., Roussel, J., Guillon, E., Skyllberg, U., Almeida, C.M.R., Pechaud, Y., Garuti, M., Frunzo, L., Esposito, G., Carliell-Marquet, C., Ortner, M., Collins, G.: Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: an overview. Crit. Rev. Environ. Sci. Technol. 46(16), 1324–1366 (2016). doi: 10.1080/10643389.2016.1235943 CrossRefGoogle Scholar
  38. 38.
    Gustavsson, J., Yekta, S.S., Sundberg, C., Karlsson, A., Ejlertsson, J., Skyllberg, U., Svensson, B.H.: Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl. Energy 112, 473–477 (2013). doi: 10.1016/j.apenergy.2013.02.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Recep Önder Sürmeli
    • 1
    • 2
    Email author
  • Alper Bayrakdar
    • 1
    • 3
  • Rahim Molaey
    • 1
  • Bariş Çalli
    • 1
  1. 1.Department of Environmental EngineeringMarmara UniversityKadikoyTurkey
  2. 2.Department of Environmental EngineeringBartın UniversityBartınTurkey
  3. 3.Department of Environmental EngineeringNecmettin Erbakan UniversityKonyaTurkey

Personalised recommendations