Advertisement

Ethanol Production from Acid Pretreated Food Waste Hydrolysate Using Saccharomyces cerevisiae 74D694 and Optimizing the Process Using Response Surface Methodology

  • Marttin Paulraj Gundupalli
  • Debraj Bhattacharyya
Original Paper
  • 100 Downloads

Abstract

Ethanol production from acid pretreated food waste hydrolysate using immobilized Saccharomyces cerevisiae 74D694 was investigated under different conditions in a batch experiment. Ethanol yield was measured at different time intervals (38, 48, 72, 96 and 105 h) using different immobilized bead ratios (25:100, 30:100, 40:100, 50:100 and 54:100, w/v). Food waste was pretreated using dilute sulphuric acid and the hydrolysate was filtered. The dry food waste had an initial reducing sugar content of 46% (w/w). After dilute acid pretreatment, reducing sugar content increased to 62%. The present study utilized liquid hydrolysate for ethanol production. The process was optimized using central composite design (CCD) a statistical tool used for optimization in response surface methodology (RSM). RSM predicted a maximum ethanol yield of 0.044 g/g of soluble solid in liquid hydrolysate at 40 h fermentation time and immobilized bead ratio of 54:100 (w/v). An experiment was run at the optimal condition and an ethanol yield of 0.047 g/g of soluble solid in liquid hydrolysate was obtained. The predicted result was thus experimentally verified.

Keywords

Ethanol production Food waste hydrolysate Immobilized beads Reducing sugar 

Abbreviations

RSM

Response surface methodology

CCD

Central composite design

YPD

Yeast peptone dextrose

ANOVA

Analysis of variance

FID

Flame ionization detector

CV

Coefficient of variance

Notes

Acknowledgements

This research was funded by Ministry of Human Resource and Development, Government of India, under FAST program.

References

  1. 1.
    Tan, K.T., Lee, K.T., Mohamed, A.R.: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy. 36, 3360–3365 (2008)CrossRefGoogle Scholar
  2. 2.
    Prajapati, V., Trivedi, U., Patel, K.C.: Bioethanol production from the raw corn starch and food waste employing simultaneous saccharification and fermentation approach. Waste Biomass Valoriz. 6, 191–200 (2015)CrossRefGoogle Scholar
  3. 3.
    Liu, B.-F., Xie, G.-J., Wang, R.-Q., Xing, D.-F., Ding, J., Zhou, X., Ren, H.-Y., Ma, C., Ren, N.-Q.: Simultaneous hydrogen and ethanol production from cascade utilization of mono-substrate in integrated dark and photo-fermentative reactor. Biotechnol. Biofuels. 8, 8 (2015)CrossRefGoogle Scholar
  4. 4.
    Matsakas, L., Christakopoulos, P.: Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustain. 7, 1446–1458 (2015)CrossRefGoogle Scholar
  5. 5.
    Silva, V.F.N., Arruda, P. V., Felipe, M.G.A., Gonçalves, A.R., Rocha, G.J.M.: Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J. Ind. Microbiol. Biotechnol. 38, 809–817 (2011)CrossRefGoogle Scholar
  6. 6.
    Díaz, M.J., Cara, C., Ruiz, E., Romero, I., Moya, M., Castro, E.: Hydrothermal pre-treatment of rapeseed straw. Bioresour. Technol. 101, 2428–2435 (2010)CrossRefGoogle Scholar
  7. 7.
    Pérez, J.A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M.J., Manzanares, P.: Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel. 87, 3640–3647 (2008)CrossRefGoogle Scholar
  8. 8.
    Pandey, B.K., Vyas, S., Pandey, M., Gaur, A.: Characterisation of municipal solid waste generated from Bhopal, India. Curr. Sci. Perspect. 2, 52–56 (2016)Google Scholar
  9. 9.
    Barik, S., Paul, K.K.: Potential reuse of kitchen food waste. J. Environ. Chem. Eng. 5, 196–204 (2017)CrossRefGoogle Scholar
  10. 10.
    Srivastava, R., Krishna, V., Sonkar, I.: Characterization and management of municipal solid waste: a case study of Varanasi city, India. Int. J. Curr. Res. Acad. Rev. 2, 10–16 (2014)Google Scholar
  11. 11.
    Moon, H.C., Song, I.S., Kim, J.C., Shirai, Y., Lee, D.H., Kim, J.K., Chung, S.O., Kim, D.H., Oh, K.K., Cho, Y.S.: Enzymatic hydrolysis of food waste and ethanol fermentation. Int. J. Energy Res. 33, 164–172 (2009)CrossRefGoogle Scholar
  12. 12.
    Alamanou, D.G., Malamis, D., Mamma, D., Kekos, D.: Bioethanol from dried household food waste applying non-isothermal simultaneous saccharification and fermentation at high substrate concentration. Waste Biomass Valoriz. 6, 353–361 (2015)CrossRefGoogle Scholar
  13. 13.
    Han, W., Hu, Y., Li, S., Huang, J., Nie, Q., Zhao, H., Tang, J.: Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. J. Clean. Prod. 141, 608–611 (2017)CrossRefGoogle Scholar
  14. 14.
    Han, W., Fang, J., Liu, Z., Tang, J.: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour. Technol. 202, 107–112 (2016)CrossRefGoogle Scholar
  15. 15.
    Han, W., Liu, D.N., Shi, Y.W., Tang, J.H., Li, Y.F., Ren, N.Q.: Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresour. Technol. 180, 54–58 (2015)CrossRefGoogle Scholar
  16. 16.
    Yan, S., Li, J., Chen, X., Wu, J., Wang, P., Ye, J., Yao, J.: Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew. Energy. 36, 1259–1265 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Bury, S., DiBiasio, D., Miller, J.E.: Effects of immobilization on growth, substrate consumption, $β$-galactosidase induction, and byproduct formation in Escherichia coli. J. Ind. Microbiol. Biotechnol. 4, 239–246 (1989)Google Scholar
  18. 18.
    Gundupalli, M.P., Bhattacharyya, D.: Recovery of reducing sugar from food waste: optimization of pretreatment parameters using response surface methodology. In: Suresh, S., Kumar, A., Shukla, A., Singh, R., Krishna, C.M. (eds.) Biofuels and Bioenergy (BICE2016): International Conference, Bhopal, India, 23–25 February 2016, pp. 161–172. Springer, Cham (2017)Google Scholar
  19. 19.
    Ma, K., Ruan, Z., Shui, Z., Wang, Y., Hu, G., He, M.: Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour. Technol. 203, 295–302 (2016)CrossRefGoogle Scholar
  20. 20.
    Nielsen, S.S.: Food Analysis laboratory manual, 2nd edn. Springer, USGoogle Scholar
  21. 21.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  22. 22.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  23. 23.
    Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Natl. Renew. Energy Lab. Tech. Rep. 1617, 1–16 (2011)Google Scholar
  24. 24.
    Duarte, J., Rodrigues, J.A., Moran, P.J., Valenca, G., Nunhez, J.: Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 3, 31 (2013)CrossRefGoogle Scholar
  25. 25.
    Bergman, L.W., Saghbini, M., Hoekstra, D., Gautsch, J.: Growth and maintenance of yeast. Methods Mol. Biol. 177, 9–14 (2001)Google Scholar
  26. 26.
    Choi, G.W., Um, H.J., Kim, Y., Kang, H.W., Kim, M., Chung, B.W., Kim, Y.H.: Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch. Biomass Bioenergy. 34, 1223–1231 (2010)CrossRefGoogle Scholar
  27. 27.
    Laopaiboon, L., Thanonkeo, P., Jaisil, P., Laopaiboon, P.: Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 23, 1497–1501 (2007)CrossRefGoogle Scholar
  28. 28.
    Buzás, Z., Dallmann, K., Szajani, B.: Influenc of pH on the growth and ethanol production of free and immobilized Saccharomyces cerevisiae cells. Biotechnol. Bioeng. 34, 882–884 (1989)Google Scholar
  29. 29.
    Dutka, M., Ditaranto, M., Løvås, T.: Application of a central composite design for the study of NOx emission performance of a low NOx. Burner. Energies. 8, 3606–3627 (2015)CrossRefGoogle Scholar
  30. 30.
    Montgomery, D.C.: Design and analysis of experiments. Design. 2, 780 ST-design and analysis of experiments. Adva (2001)Google Scholar
  31. 31.
    Irfan, M., Asghar, U., Nadeem, M., Nelofer, R., Syed, Q., Shakir, H.A., Qazi, J.I.: Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste Biomass Valoriz. 7, 1389–1396 (2016)CrossRefGoogle Scholar
  32. 32.
    Montgomery, D.C., Myers, R.H.: Design and analysis of experiments. In: Meyers, R.H., Montgomery, D.C. (eds.) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, Hoboken (1995)Google Scholar
  33. 33.
    Pandiyan, K., Tiwari, R., Singh, S., Nain, P.K.S., Rana, S., Arora, A., Singh, S.B., Nain, L.: Optimization of enzymatic saccharification of alkali pretreated Parthenium sp. Using response surface methodology. Enzyme Res. 2014 (2014)Google Scholar
  34. 34.
    Onukwuli, D.O., Emembolu, L.N., Ude, C.N., Aliozo, S.O., Menkiti, M.C.: Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt. J. Pet. 26, 103–110 (2016)Google Scholar
  35. 35.
    Selvakumar, S., Manivasagan, R., Chinnappan, K.: Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech. 3, 71–79 (2013)CrossRefGoogle Scholar
  36. 36.
    Walker, K., Vadlani, P., Madl, R., Ugorowski, P., Hohn, K.L.: Ethanol fermentation from food processing waste. Environ. Prog. Sustain. Energy. 32, 1280–1283 (2013)CrossRefGoogle Scholar
  37. 37.
    Kim, J.H., Lee, J.C., Pak, D.: Feasibility of producing ethanol from food waste. Waste Manag. 31, 2121–2125 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringIIT HyderabadKandiIndia

Personalised recommendations